Suppr超能文献

基于元 SEIRS 模型预测 SARS-CoV-2 感染病例。

Prediction of SARS-CoV-2 infection cases based on the meta-SEIRS model.

机构信息

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China.

Sichuan Center for Disease Control and Prevention, Chengdu610041, China.

出版信息

Epidemiol Infect. 2024 Nov 18;152:e144. doi: 10.1017/S0950268824001274.

Abstract

Predicting epidemic trends of coronavirus disease 2019 (COVID-19) remains a key public health concern globally today. However, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection rate in previous studies of the transmission dynamics model was mostly a fixed value. Therefore, we proposed a meta-Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model by adding a time-varying SARS-CoV-2 reinfection rate to the transmission dynamics model to more accurately characterize the changes in the number of infected persons. The time-varying reinfection rate was estimated using random-effect multivariate meta-regression based on published literature reports of SARS-CoV-2 reinfection rates. The meta-SEIRS model was constructed to predict the epidemic trend of COVID-19 from February to December 2023 in Sichuan province. Finally, according to the online questionnaire survey, the SARS-CoV-2 infection rate at the end of December 2022 in Sichuan province was 82.45%. The time-varying effective reproduction number in Sichuan province had two peaks from July to December 2022, with a maximum peak value of about 15. The prediction results based on the meta-SEIRS model showed that the highest peak of the second wave of COVID-19 in Sichuan province would be in late May 2023. The number of new infections per day at the peak would be up to 2.6 million. We constructed a meta-SEIRS model to predict the epidemic trend of COVID-19 in Sichuan province, which was consistent with the trend of SARS-CoV-2 positivity in China. Therefore, a meta-SEIRS model parameterized based on evidence-based data can be more relevant to the actual situation and thus more accurately predict future trends in the number of infections.

摘要

预测 2019 年冠状病毒病(COVID-19)的流行趋势仍然是当今全球公共卫生的一个关键关注点。然而,在之前的传播动力学模型研究中,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)再感染率大多是一个固定值。因此,我们通过在传播动力学模型中添加一个时变的 SARS-CoV-2 再感染率,提出了一个元易感-暴露-感染-恢复-易感(SEIRS)模型,以更准确地描述感染人数的变化。时变再感染率是基于 SARS-CoV-2 再感染率的已发表文献报告,使用随机效应多元荟萃回归来估计。构建元 SEIRS 模型来预测 2023 年 2 月至 12 月四川省 COVID-19 的流行趋势。最后,根据在线问卷调查,2022 年 12 月底四川省 SARS-CoV-2 感染率为 82.45%。四川省时变有效繁殖数在 2022 年 7 月至 12 月有两个高峰,最高峰值约为 15。基于元 SEIRS 模型的预测结果表明,四川省 COVID-19 第二波高峰将在 2023 年 5 月下旬出现。高峰期每天新增感染人数将达到 260 万。我们构建了一个元 SEIRS 模型来预测四川省 COVID-19 的流行趋势,该模型与中国 SARS-CoV-2 阳性率的趋势一致。因此,基于循证数据参数化的元 SEIRS 模型与实际情况更相关,从而更准确地预测未来感染人数的趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e46/11574606/79d835c1412a/S0950268824001274_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验