West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China.
Sichuan Center for Disease Control and Prevention, Chengdu610041, China.
Epidemiol Infect. 2024 Nov 18;152:e144. doi: 10.1017/S0950268824001274.
Predicting epidemic trends of coronavirus disease 2019 (COVID-19) remains a key public health concern globally today. However, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection rate in previous studies of the transmission dynamics model was mostly a fixed value. Therefore, we proposed a meta-Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model by adding a time-varying SARS-CoV-2 reinfection rate to the transmission dynamics model to more accurately characterize the changes in the number of infected persons. The time-varying reinfection rate was estimated using random-effect multivariate meta-regression based on published literature reports of SARS-CoV-2 reinfection rates. The meta-SEIRS model was constructed to predict the epidemic trend of COVID-19 from February to December 2023 in Sichuan province. Finally, according to the online questionnaire survey, the SARS-CoV-2 infection rate at the end of December 2022 in Sichuan province was 82.45%. The time-varying effective reproduction number in Sichuan province had two peaks from July to December 2022, with a maximum peak value of about 15. The prediction results based on the meta-SEIRS model showed that the highest peak of the second wave of COVID-19 in Sichuan province would be in late May 2023. The number of new infections per day at the peak would be up to 2.6 million. We constructed a meta-SEIRS model to predict the epidemic trend of COVID-19 in Sichuan province, which was consistent with the trend of SARS-CoV-2 positivity in China. Therefore, a meta-SEIRS model parameterized based on evidence-based data can be more relevant to the actual situation and thus more accurately predict future trends in the number of infections.
预测 2019 年冠状病毒病(COVID-19)的流行趋势仍然是当今全球公共卫生的一个关键关注点。然而,在之前的传播动力学模型研究中,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)再感染率大多是一个固定值。因此,我们通过在传播动力学模型中添加一个时变的 SARS-CoV-2 再感染率,提出了一个元易感-暴露-感染-恢复-易感(SEIRS)模型,以更准确地描述感染人数的变化。时变再感染率是基于 SARS-CoV-2 再感染率的已发表文献报告,使用随机效应多元荟萃回归来估计。构建元 SEIRS 模型来预测 2023 年 2 月至 12 月四川省 COVID-19 的流行趋势。最后,根据在线问卷调查,2022 年 12 月底四川省 SARS-CoV-2 感染率为 82.45%。四川省时变有效繁殖数在 2022 年 7 月至 12 月有两个高峰,最高峰值约为 15。基于元 SEIRS 模型的预测结果表明,四川省 COVID-19 第二波高峰将在 2023 年 5 月下旬出现。高峰期每天新增感染人数将达到 260 万。我们构建了一个元 SEIRS 模型来预测四川省 COVID-19 的流行趋势,该模型与中国 SARS-CoV-2 阳性率的趋势一致。因此,基于循证数据参数化的元 SEIRS 模型与实际情况更相关,从而更准确地预测未来感染人数的趋势。