Wank Marianthie, Medley Sarah, Tamura Roy N, Braun Thomas M, Kidwell Kelley M
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
Health Informatics Institute, University of South Florida, Tampa, Florida, USA.
Stat Med. 2024 Dec 30;43(30):5777-5790. doi: 10.1002/sim.10276. Epub 2024 Nov 17.
Results from randomized control trials (RCTs) may not be representative when individuals refuse to be randomized or are excluded for having a preference for which treatment they receive. If trial designs do not allow for participant treatment preferences, trials can suffer in accrual, adherence, retention, and external validity of results. Thus, there is interest surrounding clinical trial designs that incorporate participant treatment preferences. We propose a Partially Randomized, Patient Preference, Sequential, Multiple Assignment, Randomized Trial (PRPP-SMART) which combines a Partially Randomized, Patient Preference (PRPP) design with a Sequential, Multiple Assignment, Randomized Trial (SMART) design. This novel PRPP-SMART design is a multi-stage clinical trial design where, at each stage, participants either receive their preferred treatment, or if they do not have a preferred treatment, they are randomized. This paper focuses on the clinical trial design for PRPP-SMARTs and the development of Bayesian and frequentist weighted and replicated regression models (WRRMs) to analyze data from such trials. We propose a two-stage PRPP-SMART with binary end of stage outcomes and estimate the embedded dynamic treatment regimes (DTRs). Our WRRMs use data from both randomized and non-randomized participants for efficient estimation of the DTR effects. We compare our method to a more traditional PRPP analysis which only considers participants randomized to treatment. Our Bayesian and frequentist methods produce more efficient DTR estimates with negligible bias despite the inclusion of non-randomized participants in the analysis. The proposed PRPP-SMART design and analytic method is a promising approach to incorporate participant treatment preferences into clinical trial design.
当个体拒绝被随机分组或因对所接受的治疗有偏好而被排除时,随机对照试验(RCT)的结果可能不具有代表性。如果试验设计不考虑参与者的治疗偏好,试验可能在入组、依从性、保留率和结果的外部有效性方面受到影响。因此,围绕纳入参与者治疗偏好的临床试验设计存在诸多关注。我们提出了一种部分随机、患者偏好、序贯、多重分配、随机试验(PRPP-SMART),它将部分随机、患者偏好(PRPP)设计与序贯、多重分配、随机试验(SMART)设计相结合。这种新颖的PRPP-SMART设计是一种多阶段临床试验设计,在每个阶段,参与者要么接受他们偏好的治疗,要么如果他们没有偏好的治疗,就对其进行随机分组。本文重点关注PRPP-SMART的临床试验设计以及贝叶斯和频率主义加权与复制回归模型(WRRM)的开发,以分析此类试验的数据。我们提出了一种具有二元阶段结局的两阶段PRPP-SMART,并估计其中嵌入的动态治疗方案(DTR)。我们的WRRM使用来自随机和非随机参与者的数据来有效估计DTR效应。我们将我们的方法与一种更传统的PRPP分析进行比较,后者仅考虑随机接受治疗的参与者。尽管在分析中纳入了非随机参与者,但我们的贝叶斯和频率主义方法产生了更有效的DTR估计,偏差可忽略不计。所提出的PRPP-SMART设计和分析方法是将参与者治疗偏好纳入临床试验设计的一种有前景的方法。