Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, United States.
Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15261, United States.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae073.
A dynamic treatment regime (DTR) is a mathematical representation of a multistage decision process. When applied to sequential treatment selection in medical settings, DTRs are useful for identifying optimal therapies for chronic diseases such as AIDs, mental illnesses, substance abuse, and many cancers. Sequential multiple assignment randomized trials (SMARTs) provide a useful framework for constructing DTRs and providing unbiased between-DTR comparisons. A limitation of SMARTs is that they ignore data from past patients that may be useful for reducing the probability of exposing new patients to inferior treatments. In practice, this may result in decreased treatment adherence or dropouts. To address this problem, we propose a generalized outcome-adaptive (GO) SMART design that adaptively unbalances stage-specific randomization probabilities in favor of treatments observed to be more effective in previous patients. To correct for bias induced by outcome adaptive randomization, we propose G-estimators and inverse-probability-weighted estimators of DTR effects embedded in a GO-SMART and show analytically that they are consistent. We report simulation results showing that, compared to a SMART, Response-Adaptive SMART and SMART with adaptive randomization, a GO-SMART design treats significantly more patients with the optimal DTR and achieves a larger number of total responses while maintaining similar or better statistical power.
动态治疗策略 (DTR) 是多阶段决策过程的数学表示。当应用于医学环境中的序贯治疗选择时,DTR 可用于确定艾滋病、精神疾病、药物滥用和许多癌症等慢性疾病的最佳疗法。序贯多项分配随机试验 (SMART) 为构建 DTR 并提供无偏的 DTR 间比较提供了有用的框架。SMART 的一个局限性是,它们忽略了过去患者的数据,这些数据可能有助于降低将新患者暴露于较差治疗的可能性。在实践中,这可能导致治疗依从性降低或辍学。为了解决这个问题,我们提出了一种广义的基于结果的自适应 (GO) SMART 设计,该设计自适应地调整特定阶段的随机化概率,有利于在前患者中观察到更有效的治疗方法。为了纠正基于结果的自适应随机化引起的偏差,我们提出了在 GO-SMART 中嵌入的 DTR 效果的 G-估计量和逆概率加权估计量,并从理论上证明了它们是一致的。我们报告的模拟结果表明,与 SMART、适应性 SMART 和自适应随机化 SMART 相比,GO-SMART 设计可显著治疗更多的最佳 DTR 患者,并获得更多的总响应,同时保持相似或更好的统计功效。