Li Yanan, Wen Bo, Li Na, Zhao Yuanjun, Chen Yuzhi, Yin Xiangkai, Da Xinyu, Ouyang Yuxin, Li Xinyang, Kong Pengxiang, Ding Shujiang, Xi Kai, Gao Guoxin
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, P. R. China.
Hunan Desay Battery Co. LTD, 410203, Changsha, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414636. doi: 10.1002/anie.202414636. Epub 2024 Nov 22.
Unstable interphase formed in conventional carbonate-based electrolytes significantly hinders the widespread application of lithium metal batteries (LMBs) with high-capacity nickel-rich layered oxides (e.g., LiNiCoMnO, NCM811) over a wide temperature range. To balance ion transport kinetics and interfacial stability over wide temperature range, herein a bifunctional electrolyte (EAFP) tailoring the electrode/electrolyte interphase with 1,3-propanesultone as an additive was developed. The resulting cathode-electrolyte interphase with an inorganic inner layer and an organic outer layer possesses high mechanical stability and flexibility, alleviating stress accumulation and maintaining the structural integrity of the NCM811 cathode. Meanwhile, the inorganic-rich solid electrolyte interphase inhibits electrolyte side reactions and facilitates fast Li transport. As a result, the Li||Li cells exhibit stable performance in extensive temperatures with low overpotentials, especially achieving a long lifespan of 1000 h at 30 °C. Furthermore, the optimized EAFP is also suitable for LiFePO and LiCO cathodes (1000 cycles, retention: 67 %). The Li||NCM811 and graphite||NCM811 pouch cells with lean electrolyte (g/Ah grade) operate stably, verifying the broad electrode compatibility of EAFP. Notably, the Li||NCM811 cells can operate in wide climate range from -40 °C to 60 °C. This work establishes new guidelines for the regulation of interphase by electrolytes in all-weather LMBs.
在传统碳酸盐基电解质中形成的不稳定界面相严重阻碍了具有高容量富镍层状氧化物(如LiNiCoMnO,NCM811)的锂金属电池(LMBs)在宽温度范围内的广泛应用。为了在宽温度范围内平衡离子传输动力学和界面稳定性,本文开发了一种双功能电解质(EAFP),以1,3-丙烷磺酸内酯作为添加剂来定制电极/电解质界面相。所得的阴极-电解质界面相具有无机内层和有机外层,具有高机械稳定性和柔韧性,减轻了应力积累并保持了NCM811阴极的结构完整性。同时,富含无机的固体电解质界面抑制了电解质副反应并促进了锂的快速传输。结果,Li||Li电池在广泛的温度下表现出稳定的性能,过电位低,特别是在30°C下实现了1000 h的长寿命。此外,优化后的EAFP也适用于LiFePO和LiCO阴极(1000次循环,保持率:67%)。具有贫电解质(g/Ah级)的Li||NCM811和石墨||NCM811软包电池稳定运行,验证了EAFP具有广泛的电极兼容性。值得注意的是,Li||NCM811电池可以在-40°C至60°C的宽气候范围内运行。这项工作为全气候LMBs中电解质调控界面相建立了新的指导原则。