Cottom Jonathon, van Vliet Stefan, Meyer Jörg, Bliem Roland, Olsson Emilia
Advanced Research Center for Nanolithography, Science Park 106, Amsterdam 1098 XG, The Netherlands.
Institute of Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
Phys Chem Chem Phys. 2024 Nov 27;26(46):28793-28799. doi: 10.1039/d4cp04069d.
This work investigates the interaction of silicon with ruthenium, extending from Si-defect centers in ruthenium bulk to the adsorption of Si on the Ru(0001) surface. Using density functional theory (DFT) we calculate the interaction energies of up to 2 monolayers (MLs) of Si with this surface, uncovering the initial formation of ruthenium silicide (RuSi). Our results demonstrate that Si readily forms substitutional defects (Si) in bulk ruthenium. These defects are further stabilized on the Ru(0001) surface, resulting in a distinct propensity for forming Ru-Si mixed layers - which can thus be described by stoichiometry RuSi. Overlayers of surface-adsorbed Si adatoms and RuSi mixed layers are iso-energetic at 0.5 ML, with the latter becoming increasingly energetically favored at higher Si coverages. We further examine the influence of RuSi formation with respect to oxide formation, focusing on coverage-dependent energy differences. Our results show RuSi layers are energetically favored with respect to the forming oxide for silicon and oxygen coverages above 1.1 ML, respectively. In addition, the formation of RuSi and the subsequent oxidation of Ru and RuSi were also investigated experimentally using XPS. This confirmed the DFT prediction, with negligible oxide formation on the RuSi sample, whereas the unprotected Ru surface showed extensive RuO formation under the same conditions. Our study not only enhances the understanding of Ru surface chemistry but also suggests a straightforward computational approach for screening the oxidation resistance of surface coatings.
这项工作研究了硅与钌的相互作用,范围从钌体相中的硅缺陷中心到硅在Ru(0001)表面的吸附。我们使用密度泛函理论(DFT)计算了多达2个单层(Si)与该表面的相互作用能,揭示了硅化钌(RuSi)的初始形成。我们的结果表明,硅很容易在钌体相中形成替代缺陷(Si)。这些缺陷在Ru(0001)表面进一步稳定,导致形成Ru-Si混合层的明显倾向——因此可以用化学计量比RuSi来描述。表面吸附的硅原子覆盖层和RuSi混合层在0.5 ML时能量相等,在更高的硅覆盖率下,后者在能量上越来越占优势。我们进一步研究了RuSi形成对氧化物形成的影响,重点关注覆盖率依赖的能量差异。我们的结果表明,对于硅和氧覆盖率分别高于1.1 ML的情况,RuSi层在能量上比形成的氧化物更有利。此外,还使用XPS对RuSi的形成以及随后Ru和RuSi的氧化进行了实验研究。这证实了DFT的预测,在RuSi样品上形成的氧化物可忽略不计,而在相同条件下,未保护的Ru表面显示出大量的RuO形成。我们的研究不仅增进了对Ru表面化学的理解,还提出了一种直接的计算方法来筛选表面涂层的抗氧化性。