Cottom Jonathon, Hückmann Lukas, Olsson Emilia, Meyer Jörg
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands.
J Phys Chem Lett. 2024 Jan 25;15(3):840-848. doi: 10.1021/acs.jpclett.3c03376. Epub 2024 Jan 18.
In semiconductor devices, hydrogen has traditionally been viewed as a panacea for defects, being adept at neutralizing dangling bonds and consequently purging the related states from the band gap. With amorphous silicon nitride (a-SiN)─a material critical for electronic, optical, and mechanical applications─this belief holds true as hydrogen passivates both silicon and nitrogen dangling bonds. However, there is more to the story. Our density functional theory calculations unveil hydrogen's multifaceted role upon incorporation in a-SiN. On the "Jekyll" side, hydrogen atoms are indeed restorative, healing coordination defects in a-SiN. However, "Hyde" emerges as hydrogen induces Si-N bond breaking, particularly in strained regions of the amorphous network. Beyond these dual roles, our study reveals an intricate balance between hydrogen defect centers and intrinsic charge traps that already exist in pristine a-SiN: the excess charges provided by the H atoms result in charging of the a-SiN dielectric layer.
在半导体器件中,氢传统上被视为缺陷的万灵药,擅长中和悬空键,从而将相关状态从带隙中清除。对于非晶硅氮化物(a-SiN)——一种对电子、光学和机械应用至关重要的材料——这种观点是正确的,因为氢钝化了硅和氮的悬空键。然而,事情并非如此简单。我们的密度泛函理论计算揭示了氢掺入a-SiN后的多方面作用。从“杰基尔”的一面来看,氢原子确实具有修复作用,能修复a-SiN中的配位缺陷。然而,“海德”的一面出现了,因为氢会导致Si-N键断裂,特别是在非晶网络的应变区域。除了这些双重作用,我们的研究还揭示了氢缺陷中心与原始a-SiN中已经存在的本征电荷陷阱之间的复杂平衡:H原子提供的过量电荷导致a-SiN介电层充电。