Paramasivam Gokul, Yadavali Siva Prasad, Atchudan Raji, Arya Sandeep, Sundramoorthy Ashok K
Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India.
Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India.
Nanomedicine (Lond). 2024;19(30):2633-2654. doi: 10.1080/17435889.2024.2422806. Epub 2024 Nov 18.
MXene-based materials are gaining significant attention due to their exceptional properties and adaptability, leading to diverse advanced applications. In 3D printing, MXenes enhance the performance of photoblockers, photocurable inks, and composites, enabling the creation of precise, flexible and durable structures. MXene/siloxane composites offer both flexibility and resilience, while MXene/spidroin scaffolds provide excellent biocompatibility and mechanical strength, making them ideal for tissue engineering. Sustainable inks such as MXene/cellulose nano inks, alginate/MXene and MXene/emulsion underscore their role in high-performance printed materials. In cancer therapy, MXenes enable innovative photothermal and photodynamic therapies, where nanosheets generate heat and reactive oxygen species to destroy cancer cells. MXene theranostic nanoprobes combine imaging and treatment, while MXene/niobium composites support hyperthermia therapy and MXene/cellulose hydrogels allow controlled drug release. Additionally, MXene-based nanozymes enhance catalytic activity, and MXene/gold nanorods enable near-infrared-triggered drug release for noninvasive treatments. In antimicrobial applications, MXene composites enhance material durability and hygiene, providing anticorrosive protection for metals. For instance, MXene/graphene, MXene/polycaprolactone nanofibers and MXene/chitosan hydrogels exhibit significant antibacterial activity. Additionally, MXene sensors have been developed to detect antibiotic residues. MXene cryogels also promote tissue regeneration, while MXene nanohybrids facilitate photocatalytic antibacterial therapy. These advancements underscore the potential of MXenes in regenerative medicine and other fields.
基于MXene的材料因其卓越的性能和适应性而备受关注,从而带来了多样的先进应用。在3D打印中,MXene提升了光阻滞剂、光固化油墨和复合材料的性能,能够制造出精确、灵活且耐用的结构。MXene/硅氧烷复合材料兼具柔韧性和弹性,而MXene/蛛丝蛋白支架具有出色的生物相容性和机械强度,使其成为组织工程的理想选择。诸如MXene/纤维素纳米油墨、藻酸盐/MXene和MXene/乳液等可持续油墨凸显了它们在高性能印刷材料中的作用。在癌症治疗中,MXene能够实现创新的光热疗法和光动力疗法,其中纳米片会产生热量和活性氧来破坏癌细胞。MXene诊疗纳米探针将成像与治疗相结合,而MXene/铌复合材料支持热疗,MXene/纤维素水凝胶可实现药物的可控释放。此外,基于MXene的纳米酶增强了催化活性,MXene/金纳米棒能够实现近红外触发的药物释放以进行无创治疗。在抗菌应用中,MXene复合材料提高了材料的耐用性和卫生性,为金属提供防腐保护。例如,MXene/石墨烯、MXene/聚己内酯纳米纤维和MXene/壳聚糖水凝胶表现出显著的抗菌活性。此外,已开发出MXene传感器来检测抗生素残留。MXene冷冻凝胶也能促进组织再生,而MXene纳米杂化物有助于光催化抗菌治疗。这些进展凸显了MXene在再生医学和其他领域的潜力。