文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

葡聚糖接枝聚丙烯酰胺/氧化锌纳米粒子在体外和体内抑制癌细胞。

Dextran-Graft-Polyacrylamide/Zinc Oxide Nanoparticles Inhibit of Cancer Cells in vitro and in vivo.

机构信息

Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine.

Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

出版信息

Int J Nanomedicine. 2024 Nov 11;19:11719-11743. doi: 10.2147/IJN.S485106. eCollection 2024.


DOI:10.2147/IJN.S485106
PMID:39553459
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11566607/
Abstract

INTRODUCTION: Tumor drug resistance and systemic toxicity are major challenges of modern anticancer therapy. Nanotechnology makes it possible to create new materials with the required properties for anticancer therapy. METHODS: In this research, Dextran-graft-Polyacrylamide/ZnO nanoparticles were used. The study was carried out using prostate (DU-145, LNCaP, PC-3), breast (MDA-MB-231, MCF-7, MCF-7 Dox) cancer cells and non-malignant (MAEC, BALB/3T3 clone A31) cells. Zinc was visualized with fluorescence in vitro and in vivo. ROS and apoptotic markers were identified by cytometry. Zinc accumulation and histopathological changes in the tumor, liver, kidney, and spleen were evaluated in a rat model. RESULTS: ZnO nanoparticles dissociation and release of Zn into the cytosol occurs in 2-3 hours for cancerous and non-cancerous cells. ROS upregulation was detected in all cells. For non-malignant cells, the difference between the initial ROS level was insignificant. The rate of carbohydrate metabolism in cancer cells was reduced by nanosystems. Zinc level in the tumor was upregulated by 25% and 39% after treatment with nanosystems and doxorubicin combined, respectively. The tumor Walker-256 carcinosarcoma volume was reduced twice following mono-treatment with the nanocomplex and 65-fold lower when the nanocomplex was combined with doxorubicin compared with controls. In the liver, kidney and spleen, the zinc level increased by 10-15% but no significant pathological alterations in the tissues were detected. CONCLUSION: D-PAA/ZnO NPs nanosystems were internalized by prostate, breast cancer cells and non-malignant cells via endocytosis after short time, but cytotoxicity against non-cancer cells were significantly lower in vitro and in vivo. D-PAA/ZnO NPs nanocomplex efficiently promoted cell death of tumor cells without showing cytotoxicity against non-malignant cells making it a promising anti-cancer agent.

摘要

简介:肿瘤耐药性和全身毒性是现代抗癌治疗的主要挑战。纳米技术使创造具有抗癌治疗所需特性的新材料成为可能。

方法:在这项研究中,使用了葡聚糖接枝-聚丙烯酰胺/氧化锌纳米粒子。研究使用前列腺(DU-145、LNCaP、PC-3)、乳腺癌(MDA-MB-231、MCF-7、MCF-7 Dox)癌细胞和非恶性(MAEC、BALB/3T3 clone A31)细胞进行。体外和体内用荧光可视化锌。通过细胞术鉴定 ROS 和凋亡标志物。在大鼠模型中评估锌在肿瘤、肝、肾和脾中的积累和组织病理学变化。

结果:ZnO 纳米粒子在 2-3 小时内解离并将 Zn 释放到细胞质中,在癌细胞和非癌细胞中均发生。所有细胞中均检测到 ROS 上调。对于非恶性细胞,初始 ROS 水平的差异不显著。纳米系统降低了癌细胞中的碳水化合物代谢率。用纳米系统和阿霉素联合处理后,肿瘤中的锌水平分别上调了 25%和 39%。与对照组相比,单用纳米复合物和 65 倍低时,Walker-256 癌肉瘤肿瘤体积减小了两倍。在肝、肾和脾中,锌水平增加了 10-15%,但组织中未检测到明显的病理改变。

结论:D-PAA/ZnO NPs 纳米系统通过内吞作用在短时间内被前列腺癌、乳腺癌细胞和非恶性细胞内化,但在体外和体内对非恶性细胞的细胞毒性明显较低。D-PAA/ZnO NPs 纳米复合物有效地促进了肿瘤细胞的死亡,而对非恶性细胞没有显示出细胞毒性,使其成为一种有前途的抗癌药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/6ed9fee85353/IJN-19-11719-g0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/737e95b94247/IJN-19-11719-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/9aeed7105ccc/IJN-19-11719-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/57f6a8148115/IJN-19-11719-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/07c3882ff7d2/IJN-19-11719-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/4258b1898630/IJN-19-11719-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/a9cd8a5c036b/IJN-19-11719-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/a9f9da3df973/IJN-19-11719-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/f0252190b889/IJN-19-11719-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/21e5ef9c4d74/IJN-19-11719-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/6c8df15fb313/IJN-19-11719-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/ce4b62316dbd/IJN-19-11719-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/b478ad05714c/IJN-19-11719-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/bbaf929224e5/IJN-19-11719-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/910602cc939e/IJN-19-11719-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/4eed0ed60138/IJN-19-11719-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/1c902333e6f9/IJN-19-11719-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/5bd7dadb4e5b/IJN-19-11719-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/6ed9fee85353/IJN-19-11719-g0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/737e95b94247/IJN-19-11719-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/9aeed7105ccc/IJN-19-11719-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/57f6a8148115/IJN-19-11719-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/07c3882ff7d2/IJN-19-11719-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/4258b1898630/IJN-19-11719-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/a9cd8a5c036b/IJN-19-11719-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/a9f9da3df973/IJN-19-11719-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/f0252190b889/IJN-19-11719-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/21e5ef9c4d74/IJN-19-11719-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/6c8df15fb313/IJN-19-11719-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/ce4b62316dbd/IJN-19-11719-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/b478ad05714c/IJN-19-11719-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/bbaf929224e5/IJN-19-11719-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/910602cc939e/IJN-19-11719-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/4eed0ed60138/IJN-19-11719-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/1c902333e6f9/IJN-19-11719-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/5bd7dadb4e5b/IJN-19-11719-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/11566607/6ed9fee85353/IJN-19-11719-g0018.jpg

相似文献

[1]
Dextran-Graft-Polyacrylamide/Zinc Oxide Nanoparticles Inhibit of Cancer Cells in vitro and in vivo.

Int J Nanomedicine. 2024

[2]
Combined Dextran-Graft-Polyacrylamide/Zinc Oxide Nanocarrier for Effective Anticancer Therapy in vitro.

Int J Nanomedicine. 2023

[3]
Toxicity, Antibacterial, Antioxidant, Antidiabetic, and DNA Cleavage Effects of Dextran-Graft-Polyacrylamide/Zinc Oxide Nanosystems.

Curr Microbiol. 2024-11-2

[4]
EFFECTS OF DEXTRAN-GRAFT-POLYACRYLAMIDE/ZnO NANOPARTICLES ON PROSTATE CANCER CELL LINES IN VITRO.

Exp Oncol. 2022-11

[5]
pH-Sensitive doxorubicin delivery using zinc oxide nanoparticles as a rectified theranostic platform: anti-proliferative, apoptotic, cell cycle arrest and radio-distribution studies.

J Mater Chem B. 2024-6-27

[6]
Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species.

Int J Nanomedicine. 2012-2-21

[7]
Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells.

Sci Rep. 2024-6-12

[8]
Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.

Theranostics. 2020

[9]
Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles.

Nanoscale. 2019-6-20

[10]
The Anti-Breast Cancer Effects of Green-Synthesized Zinc Oxide Nanoparticles Using Carob Extracts.

Anticancer Agents Med Chem. 2021

本文引用的文献

[1]
Targeting the lactic acid metabolic pathway for antitumor therapy.

Mol Ther Oncolytics. 2023-10-31

[2]
Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance.

Pharmaceutics. 2023-11-10

[3]
Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes.

Biomed Pharmacother. 2023-12

[4]
Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis?

Nanotechnology. 2023-10-30

[5]
Combined Dextran-Graft-Polyacrylamide/Zinc Oxide Nanocarrier for Effective Anticancer Therapy in vitro.

Int J Nanomedicine. 2023

[6]
Characterization, dose dependent assessment of hepatorenal oxidative stress, hematological parameters and histopathological divulging of the hepatic damages induced by Zinc oxide nanoparticles (ZnO-NPs) in adult male Sprague Dawley rats.

Saudi J Biol Sci. 2023-9

[7]
Identification of lactate-related subgroups and prognostic model in triple-negative breast cancer.

J Cancer Res Clin Oncol. 2023-11

[8]
Zinc oxide nanoparticles induce toxicity in diffuse large B-cell lymphoma cell line U2932 via activating PINK1/Parkin-mediated mitophagy.

Biomed Pharmacother. 2023-8

[9]
Comparison of Three Low-Molecular-Weight Fluorescent Probes for Measuring Free Zinc Levels in Cultured Mammary Cells.

Nutrients. 2023-4-13

[10]
A Systematic Study on Zinc-Related Metabolism in Breast Cancer.

Nutrients. 2023-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索