文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过将过氧化钙负载到肿瘤微环境响应性纳米颗粒中实现疗效可控的纳米医学,用于前列腺癌的抗肿瘤治疗。

Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.

机构信息

Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China.

Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 20040, China.

出版信息

Theranostics. 2020 Aug 2;10(21):9808-9829. doi: 10.7150/thno.43631. eCollection 2020.


DOI:10.7150/thno.43631
PMID:32863961
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7449903/
Abstract

Prostate cancer has become one of the most threatening malignant tumors in men, leading to an imperative need to develop effective and safe therapies. Because of the unique metabolism of tumor cells, the tumor microenvironment (TME) exhibits distinctive properties compared with normal tissues, among which the pH difference has been utilized as an ideal antitumor strategy. Herein, we introduce a reactive oxygen species (ROS)-controlled-release nanosystem with TME-responsiveness by applying hollow mesoporous silica nanoparticles (HMSNs) as carriers loaded with calcium peroxide (CaO) and coated with polyacrylic acid (PAA) to construct the functional material CaO@HMSNs-PAA. The differences in pH values and exogenous ROS scavenging abilities between the tumor tissue and normal tissues and the dual pH-responsiveness from CaO and PAA lay a scientific foundation for the application of CaO@HMSNs-PAA in the tumor-selective therapy for prostate cancer. The morphology and the structure of the nanosystem were characterized by the transmission electron microscope, scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, zeta potential, dynamic light scattering measurement, low-angle X-ray diffraction patterns and nitrogen adsorption/desorption isotherm. The CaO loading capacity and release profiles in different buffer solutions were determined by inductively coupled plasma-mass spectrometry. The intracellular uptake of CaO@HMSNs-PAA was explored on the PC-3 prostate cancer cell line confocal laser scanning microscopy. The CCK-8 cell proliferation assay was conducted to evaluate the cytotoxicity of CaO@HMSNs-PAA against PC-3 cells. ROS produced by CaO@HMSNs-PAA was observed by a fluorescence microscope. The flow cytometry was utilized to analyze the apoptosis of PC-3 cells induced by CaO@HMSNs-PAA. The Western blot analysis was performed to detect expressions of critical mitochondria-mediated apoptosis markers in PC-3 cells after incubation with CaO@HMSNs-PAA. The biosafety and antitumor efficacy were evaluated out on BALB/c mice and BALB/c nude mice subcutaneously transplanted with PC-3 cells, respectively. Comprehensive characterizations indicated the successful synthesis of CaO@HMSNs-PAA with significant TME-responsiveness. The experimental results demonstrated that the well-developed nanocarrier could efficiently deliver CaO to the tumor site and release ROS in response to the decreased pH value of TME, exerting ideal antitumor effects both and by activating the mitochondria-mediated apoptosis pathway. Simultaneously, this nanoplatform caused no detectable damage to normal tissues. After loading into the above nanocomposite, the free CaO without a significant antitumor effect can exert excellent antitumor efficacy by responsively releasing ROS under the acidic TME to induce the mitochondria-mediated apoptosis remarkable oxidative stress and simultaneously minimize damages to normal tissues. The current study presents a new concept of "efficacy-shaping nanomedicine" for the tumor-selective treatment of prostate cancer.

摘要

前列腺癌已成为男性最具威胁性的恶性肿瘤之一,因此迫切需要开发有效且安全的治疗方法。由于肿瘤细胞的独特代谢,肿瘤微环境(TME)与正常组织相比具有独特的性质,其中 pH 值差异已被用作理想的抗肿瘤策略。在此,我们通过应用中空介孔硅纳米粒子(HMSNs)作为载体负载过氧化钙(CaO)并涂覆聚丙烯酸(PAA)来构建具有 TME 响应性的活性氧(ROS)可控释放纳米系统,从而构建了一种功能材料 CaO@HMSNs-PAA。肿瘤组织和正常组织之间的 pH 值差异和外源性 ROS 清除能力的差异以及 CaO 和 PAA 的双重 pH 响应性为 CaO@HMSNs-PAA 在前列腺癌的肿瘤选择性治疗中的应用奠定了科学基础。通过透射电子显微镜、扫描电子显微镜、能谱仪、傅里叶变换红外光谱、Zeta 电位、动态光散射测量、低角度 X 射线衍射图谱和氮气吸附/脱附等温线对纳米系统的形态和结构进行了表征。通过电感耦合等离子体质谱法确定了不同缓冲溶液中 CaO 的负载能力和释放曲线。通过共聚焦激光扫描显微镜研究了 CaO@HMSNs-PAA 在 PC-3 前列腺癌细胞系中的细胞内摄取情况。通过 CCK-8 细胞增殖实验评估了 CaO@HMSNs-PAA 对 PC-3 细胞的细胞毒性。通过荧光显微镜观察 CaO@HMSNs-PAA 产生的 ROS。通过流式细胞术分析 CaO@HMSNs-PAA 诱导的 PC-3 细胞凋亡。通过 Western blot 分析检测 CaO@HMSNs-PAA 孵育后 PC-3 细胞中关键的线粒体介导的细胞凋亡标志物的表达。通过 BALB/c 小鼠和 BALB/c 裸鼠皮下移植 PC-3 细胞,分别评估其生物安全性和抗肿瘤疗效。综合特征表明成功合成了具有显著 TME 响应性的 CaO@HMSNs-PAA。实验结果表明,这种发达的纳米载体可以将 CaO 高效递送到肿瘤部位,并响应 TME 中 pH 值的降低释放 ROS,通过激活线粒体介导的凋亡途径发挥理想的抗肿瘤作用。同时,这种纳米平台对正常组织没有造成明显的损伤。在装载到上述纳米复合材料中后,没有明显抗肿瘤作用的游离 CaO 可以通过在酸性 TME 下响应性释放 ROS 发挥优异的抗肿瘤功效,从而诱导线粒体介导的凋亡,同时显著氧化应激,同时将对正常组织的损伤降至最低。本研究为前列腺癌的肿瘤选择性治疗提出了一种“疗效塑造纳米医学”的新概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/c98af998dd69/thnov10p9808g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/bdac25573308/thnov10p9808g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/23115bc80c91/thnov10p9808g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/309babbe5a79/thnov10p9808g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/f7ad97f55cef/thnov10p9808g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/99fddce0ee69/thnov10p9808g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/9a82719acaab/thnov10p9808g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/0bfaa396814e/thnov10p9808g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/6eaf8f285fcc/thnov10p9808g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/144258227304/thnov10p9808g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/c98af998dd69/thnov10p9808g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/bdac25573308/thnov10p9808g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/23115bc80c91/thnov10p9808g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/309babbe5a79/thnov10p9808g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/f7ad97f55cef/thnov10p9808g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/99fddce0ee69/thnov10p9808g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/9a82719acaab/thnov10p9808g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/0bfaa396814e/thnov10p9808g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/6eaf8f285fcc/thnov10p9808g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/144258227304/thnov10p9808g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ed/7449903/c98af998dd69/thnov10p9808g010.jpg

相似文献

[1]
Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.

Theranostics. 2020

[2]
Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance.

Colloids Surf B Biointerfaces. 2019-11-1

[3]
pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy.

J Colloid Interface Sci. 2024-12

[4]
Fabricating polydopamine-coated MoSe-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy.

Int J Nanomedicine. 2018-11-16

[5]
A Transferrin-Conjugated Hollow Nanoplatform for Redox-Controlled and Targeted Chemotherapy of Tumor with Reduced Inflammatory Reactions.

Theranostics. 2018-1-1

[6]
Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy.

Biomaterials. 2016-1-6

[7]
Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug Etoposide.

Drug Dev Ind Pharm. 2018-2-19

[8]
Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells.

Acta Pharmacol Sin. 2021-5

[9]
Designed Synthesis of Lipid-Coated Polyacrylic Acid/Calcium Phosphate Nanoparticles as Dual pH-Responsive Drug-Delivery Vehicles for Cancer Chemotherapy.

Chemistry. 2017-5-11

[10]
Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment.

Acta Biomater. 2017-11-7

引用本文的文献

[1]
Augmenting osteoporotic osseointegration through a temporal release nanocoating-based reversing dysregulated osteogenic microenvironment.

J Orthop Translat. 2025-4-5

[2]
Preparation and Properties of Calcium Peroxide/Poly(ethylene glycol)@Silica Nanoparticles with Controlled Oxygen-Generating Behaviors.

Materials (Basel). 2025-5-30

[3]
Ultrasound-actuated ion homeostasis perturbator for oxidative damage-augmented Ca interference therapy and combined immunotherapy.

Mater Today Bio. 2025-3-13

[4]
COL10A1 Facilitates Prostate Cancer Progression by Interacting With INHBA to Activate the PI3K/AKT Pathway.

J Cell Mol Med. 2024-12

[5]
Implantable Multifunctional Micro-Oxygen Reservoir System for Promoting Vascular-Osteogenesis via Remodeling Regenerative Microenvironment.

Adv Sci (Weinh). 2025-1

[6]
Low-dose arsenic trioxide inhibits pancreatic stellate cell activation via LOXL3 expression to enhance immunotherapy in pancreatic cancer.

Br J Cancer. 2024-12

[7]
Antimicrobial and antibiotic-potentiating effect of calcium peroxide nanoparticles on oral bacterial biofilms.

NPJ Biofilms Microbiomes. 2024-10-15

[8]
Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects.

Int J Nanomedicine. 2024

[9]
An iron-based metal-organic framework nanoplatform for enhanced ferroptosis and oridonin delivery as a comprehensive antitumor strategy.

Acta Pharm Sin B. 2024-9

[10]
Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy.

Nat Commun. 2024-8-8

本文引用的文献

[1]
Lysosomes activating chain reactions against cancer cells with a pH-switched prodrug/procatalyst co-delivery nanosystem.

J Mater Chem B. 2017-2-7

[2]
Efficient free radical generation against cancer cells by low-dose X-ray irradiation with a functional SPC delivery nanosystem.

J Mater Chem B. 2016-9-21

[3]
Two-dimensional antibacterial Pd@Ag nanosheets with a synergetic effect of plasmonic heating and Ag release.

J Mater Chem B. 2015-8-14

[4]
A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption.

J Mater Chem B. 2015-8-21

[5]
Selective intracellular free radical generation against cancer cells by bioactivation of low-dose artesunate with a functionalized mesoporous silica nanosystem.

J Mater Chem B. 2014-10-28

[6]
Controlled free radical generation against tumor cells by pH-responsive mesoporous silica nanocomposite.

J Mater Chem B. 2014-6-14

[7]
Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy.

Theranostics. 2019-9-23

[8]
Mitochondria as multifaceted regulators of cell death.

Nat Rev Mol Cell Biol. 2019-10-21

[9]
Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial.

Ann Oncol. 2019-12-1

[10]
The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge.

Water Res. 2019-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索