Suppr超能文献

一种用于跨扫视空间更新和错误定位的电路模型。

A circuit model for transsaccadic space updating and mislocalization.

作者信息

Wang Xiao, Tsien Sophia, Goldberg Michael E, Zhang Mingsha, Qian Ning

机构信息

Chengdu Fluid Dynamics Innovation Center, Chengdu, Sichuan, China.

Bergen County Technical High School, Teterboro, NJ, USA.

出版信息

bioRxiv. 2024 Oct 28:2024.10.27.620527. doi: 10.1101/2024.10.27.620527.

Abstract

We perceive a stable, continuous world despite drastic changes of retinal images across saccades. However, while objects in daily life appear stable across saccades, stimuli around saccades can be grossly mislocalized. We address this puzzle with our recently proposed circuit model for perisaccadic receptive-field (RF) remapping in LIP and FEF. The model uses center/surround connections to store a relevant stimulus' retinal location in memory as a population activity. This activity profile is updated across each saccade by directional connections gated by the corollary discharge (CD) of the saccade command. The updating is a continuous backward (against the saccade) shift of the population activity (equivalent to continuous forward remapping of the RFs), whose cumulative effect across the saccade is a subtraction of the saccade vector. The model explains forward and backward translational mislocalization for stimuli flashed around the saccade onset and offset, respectively, as insufficient and unnecessary cumulative updating after the saccade, caused by the sluggish CD time course and visual response latency. We confirm the model prediction that for perisaccadic RFs measured with flashes before the saccades, the final forward remapping magnitudes after the saccades are smaller for later flashes. We discuss the possibility that compressive mislocalization results from a brief reduction of attentional remapping and repulsion. Although many models of RF remapping, transsaccadic updating, and perisaccadic mislocalization have been proposed, our work unifies them into a single circuit mechanism and suggests that the brain uses "unaware" decoders which do not distinguish between different origins of neurons' activities.

摘要

尽管扫视过程中视网膜图像会发生剧烈变化,但我们仍能感知到一个稳定、连续的世界。然而,虽然日常生活中的物体在扫视过程中看起来是稳定的,但扫视周围的刺激可能会被严重错误定位。我们用最近提出的用于在侧顶叶皮层(LIP)和额眼区(FEF)进行扫视周围感受野(RF)重映射的电路模型来解决这个难题。该模型使用中心/外周连接将相关刺激的视网膜位置作为群体活动存储在记忆中。这种活动模式在每次扫视过程中通过由扫视命令的伴随放电(CD)门控的定向连接进行更新。更新是群体活动的连续向后(与扫视方向相反)移动(相当于RF的连续向前重映射),其在扫视过程中的累积效应是减去扫视向量。该模型解释了分别在扫视开始和结束时闪烁的刺激的向前和向后平移错误定位,是由于CD时间进程和视觉反应潜伏期导致扫视后累积更新不足和不必要。我们证实了模型预测,即对于在扫视前用闪光测量的扫视周围RF,扫视后较晚闪光的最终向前重映射幅度较小。我们讨论了压缩性错误定位可能是由于注意力重映射和排斥的短暂减少导致的可能性。尽管已经提出了许多关于RF重映射、跨扫视更新和扫视周围错误定位的模型,但我们的工作将它们统一为一个单一的电路机制,并表明大脑使用“无意识”解码器,该解码器不区分神经元活动的不同来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b62a/11565902/4e53ee10d9c4/nihpp-2024.10.27.620527v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验