Suppr超能文献

用于全基因组昼夜节律生物标志物检测的贝叶斯框架

A Bayesian Framework for Genome-wide Circadian Rhythmicity Biomarker Detection.

作者信息

Ding Haocheng, Meng Lingsong, Zhang Yutao, Bryant Andrew J, Xing Chengguo, Esser Karyn A, Chen Li, Huo Zhiguang

出版信息

bioRxiv. 2024 Oct 31:2024.10.28.620703. doi: 10.1101/2024.10.28.620703.

Abstract

Circadian rhythms are endogenous ∼24-hour cycles that significantly influence physiological and behavioral processes. These rhythms are governed by a transcriptional-translational feedback loop of core circadian genes and are essential for maintaining overall health. The study of circadian rhythms has expanded into various omics datasets, necessitating accurate analytical methodology for circadian biomarker detection. Here, we introduce a novel Bayesian framework for the genome-wide detection of circadian rhythms that is capable of incorporating prior biological knowledge and adjusting for multiple testing issue via a false discovery rate approach. Our framework leverages a Bayesian hierarchical model and employs a reverse jump Markov chain Monte Carlo (rjMCMC) technique for model selection. Through extensive simulations, our method, BayesCircRhy, demonstrated superior false discovery rate control over competing methods, robustness against heavier-tailed error distributions, and better performance compared to existing approaches. The method's efficacy was further validated in two RNA-Sequencing data, including a human resitrcted feeding data and a mouse aging data, where it successfully identified known and novel circadian genes. R package "BayesianCircadian" for the method is publicly available on GitHub https://github.com/jxncdhc/BayesianCircadian .

摘要

昼夜节律是内源性的约24小时周期,对生理和行为过程有显著影响。这些节律受核心昼夜节律基因的转录-翻译反馈回路调控,对维持整体健康至关重要。昼夜节律的研究已扩展到各种组学数据集,因此需要准确的分析方法来检测昼夜节律生物标志物。在此,我们介绍一种用于全基因组昼夜节律检测的新型贝叶斯框架,该框架能够纳入先验生物学知识,并通过错误发现率方法调整多重检验问题。我们的框架利用贝叶斯层次模型,并采用可逆跳跃马尔可夫链蒙特卡罗(rjMCMC)技术进行模型选择。通过广泛的模拟,我们的方法BayesCircRhy在控制错误发现率方面优于竞争方法,对重尾误差分布具有鲁棒性,并且与现有方法相比性能更好。该方法的有效性在两个RNA测序数据中得到进一步验证,包括人类限时进食数据和小鼠衰老数据,在这些数据中它成功识别出已知和新的昼夜节律基因。该方法的R包“BayesianCircadian”可在GitHub上公开获取,网址为https://github.com/jxncdhc/BayesianCircadian

相似文献

1
A Bayesian Framework for Genome-wide Circadian Rhythmicity Biomarker Detection.
bioRxiv. 2024 Oct 31:2024.10.28.620703. doi: 10.1101/2024.10.28.620703.
3
Circadian Gene Selection for Time-to-event Phenotype by Integrating CNV and RNAseq Data.
Chemometr Intell Lab Syst. 2021 May 15;212. doi: 10.1016/j.chemolab.2021.104276. Epub 2021 Mar 16.
4
MOSAIC: a joint modeling methodology for combined circadian and non-circadian analysis of multi-omics data.
Bioinformatics. 2021 May 5;37(6):767-774. doi: 10.1093/bioinformatics/btaa877.
5
Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model.
Stat Med. 2023 Aug 15;42(18):3236-3258. doi: 10.1002/sim.9803. Epub 2023 Jun 2.
6
DiffCircaPipeline: a framework for multifaceted characterization of differential rhythmicity.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad039.
7
MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments.
BMC Bioinformatics. 2020 Aug 28;21(1):375. doi: 10.1186/s12859-020-03715-y.
8
Sensory conflict disrupts circadian rhythms in the sea anemone .
Elife. 2023 Apr 6;12:e81084. doi: 10.7554/eLife.81084.
9
Uncovering circadian rhythms in metabolic longitudinal data: A Bayesian latent class modeling approach.
Stat Med. 2023 Aug 15;42(18):3302-3315. doi: 10.1002/sim.9806. Epub 2023 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验