Suppr超能文献

MOSAIC:一种联合建模方法,用于对多组学数据进行联合的昼夜节律和非昼夜节律分析。

MOSAIC: a joint modeling methodology for combined circadian and non-circadian analysis of multi-omics data.

机构信息

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Institute for Data Exploration and Applications, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Bioinformatics. 2021 May 5;37(6):767-774. doi: 10.1093/bioinformatics/btaa877.

Abstract

MOTIVATION

Circadian rhythms are approximately 24-h endogenous cycles that control many biological functions. To identify these rhythms, biological samples are taken over circadian time and analyzed using a single omics type, such as transcriptomics or proteomics. By comparing data from these single omics approaches, it has been shown that transcriptional rhythms are not necessarily conserved at the protein level, implying extensive circadian post-transcriptional regulation. However, as proteomics methods are known to be noisier than transcriptomic methods, this suggests that previously identified arrhythmic proteins with rhythmic transcripts could have been missed due to noise and may not be due to post-transcriptional regulation.

RESULTS

To determine if one can use information from less-noisy transcriptomic data to inform rhythms in more-noisy proteomic data, and thus more accurately identify rhythms in the proteome, we have created the Multi-Omics Selection with Amplitude Independent Criteria (MOSAIC) application. MOSAIC combines model selection and joint modeling of multiple omics types to recover significant circadian and non-circadian trends. Using both synthetic data and proteomic data from Neurospora crassa, we showed that MOSAIC accurately recovers circadian rhythms at higher rates in not only the proteome but the transcriptome as well, outperforming existing methods for rhythm identification. In addition, by quantifying non-circadian trends in addition to circadian trends in data, our methodology allowed for the recognition of the diversity of circadian regulation as compared to non-circadian regulation.

AVAILABILITY AND IMPLEMENTATION

MOSAIC's full interface is available at https://github.com/delosh653/MOSAIC. An R package for this functionality, mosaic.find, can be downloaded at https://CRAN.R-project.org/package=mosaic.find.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

昼夜节律是大约 24 小时的内源性周期,控制着许多生物功能。为了识别这些节律,生物样本在昼夜时间内被采集,并使用单一的组学类型进行分析,如转录组学或蛋白质组学。通过比较这些单一组学方法的数据,已经表明转录节律在蛋白质水平上不一定保守,这意味着广泛的昼夜转录后调控。然而,由于蛋白质组学方法的噪声比转录组学方法大,这表明以前鉴定的具有节律转录本的非节律蛋白可能由于噪声而被遗漏,而不是由于转录后调控。

结果

为了确定是否可以利用来自噪声较小的转录组学数据的信息来推断噪声较大的蛋白质组学数据中的节律,从而更准确地识别蛋白质组中的节律,我们创建了多组学选择与幅度独立标准(MOSAIC)应用程序。MOSAIC 结合了多个组学类型的模型选择和联合建模,以恢复显著的昼夜和非昼夜趋势。使用合成数据和Neurospora crassa 的蛋白质组学数据,我们表明 MOSAIC 不仅可以更准确地恢复蛋白质组中的昼夜节律,而且可以更准确地恢复转录组中的昼夜节律,优于现有的节律识别方法。此外,通过在数据中量化非昼夜趋势以及昼夜趋势,我们的方法学允许识别与非昼夜调节相比的昼夜调节的多样性。

可用性和实现

MOSAIC 的完整界面可在 https://github.com/delosh653/MOSAIC 上获得。此功能的 R 包 mosaic.find 可在 https://CRAN.R-project.org/package=mosaic.find 下载。

补充信息

补充数据可在生物信息学在线获得。

相似文献

10
Circadian rhythms and proteomics: It's all about posttranslational modifications!昼夜节律和蛋白质组学:一切都与翻译后修饰有关!
Wiley Interdiscip Rev Syst Biol Med. 2019 Sep;11(5):e1450. doi: 10.1002/wsbm.1450. Epub 2019 Apr 29.

引用本文的文献

本文引用的文献

2
Building blocks are synthesized on demand during the yeast cell cycle.在酵母细胞周期中按需合成积木。
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7575-7583. doi: 10.1073/pnas.1919535117. Epub 2020 Mar 25.
3
Multi-omics Data Integration, Interpretation, and Its Application.多组学数据整合、解读及其应用
Bioinform Biol Insights. 2020 Jan 31;14:1177932219899051. doi: 10.1177/1177932219899051. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验