Beckwith Kai Sandvold, Brunner Andreas, Morero Natalia Rosalia, Jungmann Ralf, Ellenberg Jan
Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
Dept. Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
bioRxiv. 2024 Oct 29:2024.10.28.620625. doi: 10.1101/2024.10.28.620625.
How genomic DNA is folded during cell division to form the characteristic rod-shaped mitotic chromosomes essential for faithful genome inheritance is a long-standing open question in biology. Here, we use nanoscale DNA-tracing in single dividing cells to directly visualize how the 3D fold of genomic DNA changes during mitosis, at scales from single loops to entire chromosomes. Our structural analysis reveals a characteristic genome scaling minimum at 6-8 Mbp in mitosis. Combined with data-driven modeling and molecular perturbations, we can show that very large and strongly overlapping loops formed by Condensins are the fundamental structuring principle of mitotic chromosomes. These loops compact chromosomes locally and globally to the limit set by chromatin self-repulsion. The characteristic length, density and increasingly overlapping structure of mitotic loops we observe in 3D, fully explain how the rod-shaped mitotic chromosome structure emerges by self-organization during cell division.
在细胞分裂过程中,基因组DNA如何折叠形成对准确的基因组遗传至关重要的特征性杆状有丝分裂染色体,这是生物学中一个长期存在的开放性问题。在这里,我们在单个分裂细胞中使用纳米级DNA追踪技术,直接观察基因组DNA的三维折叠在有丝分裂过程中如何变化,范围从单个环到整个染色体。我们的结构分析揭示了有丝分裂过程中在6-8兆碱基对处存在一个特征性的基因组尺度最小值。结合数据驱动的建模和分子扰动,我们可以表明,凝聚素形成的非常大且强烈重叠的环是有丝分裂染色体的基本结构原理。这些环在局部和全局将染色体压缩到染色质自排斥所设定的极限。我们在三维中观察到的有丝分裂环的特征长度、密度和越来越重叠的结构,充分解释了杆状有丝分裂染色体结构在细胞分裂过程中如何通过自组织形成。