Kwiatkowski Dominic
St. John's College, University of Oxford, Oxford, UK.
Wellcome Open Res. 2024 Apr 23;9:215. doi: 10.12688/wellcomeopenres.19092.1. eCollection 2024.
The genomic diversity of a parasite population is shaped by its transmission dynamics but superinfection, cotranmission and recombination make this relationship complex and hard to analyse. This paper aims to simplify the problem by introducing the concept of a genomic transmission graph with three basic parameters: the effective number of hosts, the quantum of transmission and the crossing rate of transmission chains. This enables rapid simulation of coalescence times in a recombining parasite population with superinfection and cotransmission, and it also provides a mathematical framework for analysis of within-host variation. Taking malaria as an example, we use this theoretical model to examine how transmission dynamics and migration affect parasite genomic diversity, including the effective recombination rate and haplotypic metrics of recent common ancestry. We show how key transmission parameters can be inferred from deep sequencing data and as a proof of concept we estimate the Plasmodium falciparum transmission bottleneck. Finally we discuss the potential applications of this novel inferential framework in genomic surveillance for malaria control and elimination. Online tools for exploring the genomic transmission graph are available at d-kwiat.github.io/gtg.
寄生虫种群的基因组多样性由其传播动态所塑造,但重复感染、共同传播和重组使得这种关系变得复杂且难以分析。本文旨在通过引入具有三个基本参数的基因组传播图概念来简化这一问题:宿主的有效数量、传播量和传播链的交叉率。这使得能够快速模拟存在重复感染和共同传播的重组寄生虫种群中的合并时间,并且还为分析宿主体内变异提供了一个数学框架。以疟疾为例,我们使用这个理论模型来研究传播动态和迁移如何影响寄生虫基因组多样性,包括有效重组率和近期共同祖先的单倍型指标。我们展示了如何从深度测序数据中推断关键传播参数,并且作为概念验证,我们估计了恶性疟原虫的传播瓶颈。最后,我们讨论了这个新颖的推断框架在疟疾控制和消除的基因组监测中的潜在应用。可在d-kwiat.github.io/gtg获取用于探索基因组传播图的在线工具。