Schreter-Fleischhacker Magdalena, Munch Peter, Much Nils, Kronbichler Martin, Wall Wolfgang A, Meier Christoph
Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany.
Institute for High-Performance Scientific Computing, University of Augsburg, Universitätsstraße 12a, 86159 Augsburg, Germany.
Adv Model Simul Eng Sci. 2024;11(1):19. doi: 10.1186/s40323-024-00276-0. Epub 2024 Nov 13.
We present accurate and mathematically consistent formulations of a diffuse-interface model for two-phase flow problems involving rapid evaporation. The model addresses challenges including discontinuities in the density field by several orders of magnitude, leading to high velocity and pressure jumps across the liquid-vapor interface, along with dynamically changing interface topologies. To this end, we integrate an incompressible Navier-Stokes solver combined with a conservative level-set formulation and a regularized, i.e., diffuse, representation of discontinuities into a matrix-free adaptive finite element framework. The achievements are three-fold: First, we propose mathematically consistent definitions for the level-set transport velocity in the diffuse interface region by extrapolating the velocity from the liquid or gas phase. They exhibit superior prediction accuracy for the evaporated mass and the resulting interface dynamics compared to a local velocity evaluation, especially for strongly curved interfaces.Second, we show that accurate prediction of the evaporation-induced pressure jump requires a consistent, namely a reciprocal, density interpolation across the interface, which satisfies local mass conservation. Third, the combination of diffuse interface models for evaporation with standard Stokes-type constitutive relations for viscous flows leads to significant pressure artifacts in the diffuse interface region. To mitigate these, we propose to introduce a correction term for such constitutive model types. Through selected analytical and numerical examples, the aforementioned properties are validated. The presented model promises new insights in simulation-based prediction of melt-vapor interactions in thermal multiphase flows such as in laser-based powder bed fusion of metals.
我们提出了一种用于涉及快速蒸发的两相流问题的扩散界面模型的精确且数学上一致的公式。该模型解决了包括密度场中几个数量级的不连续性等挑战,这会导致液 - 气界面处出现高速和压力跳跃,以及动态变化的界面拓扑结构。为此,我们将不可压缩的纳维 - 斯托克斯求解器与保守的水平集公式以及不连续性的正则化(即扩散)表示集成到一个无矩阵自适应有限元框架中。成果有三个方面:第一,我们通过从液相或气相外推速度,为扩散界面区域中的水平集传输速度提出了数学上一致的定义。与局部速度评估相比,它们在蒸发质量和由此产生的界面动力学方面表现出卓越的预测精度,特别是对于强弯曲界面。第二,我们表明准确预测蒸发引起的压力跳跃需要在界面上进行一致的(即互易的)密度插值,这满足局部质量守恒。第三,用于蒸发的扩散界面模型与粘性流动的标准斯托克斯型本构关系相结合,会在扩散界面区域导致显著的压力伪影。为了减轻这些问题,我们建议为这种本构模型类型引入一个校正项。通过选定的解析和数值示例,验证了上述特性。所提出的模型有望为热多相流中熔体 - 蒸汽相互作用的基于模拟的预测提供新的见解,例如在基于激光的金属粉末床熔融中。