Liu Jiaming, Nie Hao, Du Wenji, Song Wei
Jiaming Liu, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
Hao Nie, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
Pak J Med Sci. 2024 Nov;40(10):2368-2372. doi: 10.12669/pjms.40.10.9025.
To develop a risk model based on LncRNAs associated with disulfidptosis to forecast the prognosis and assess immune infiltration of Lung adenocarcinoma (LUAD).
This study employed a bioinformatics approach. The study was conducted from March 29, 2023 and concluded on July 1, 2023 at Guangzhou University of Chinese Medicine, Guangzhou, China. Transcriptomic data specific to LUAD were collected from TCGA database. Disulfidptosis-related LncRNAs were preliminarily screened using co-expression analysis, followed by screening using Lasso regression and Cox regression to identify LncRNAs. Subsequently, prognostic prediction models were constructed. To assess the model, survival analysis, subject operating characteristic curves, and calibration curves were employed. To evaluate the tumor microenvironment, the "estimate" package was used, while the "ggpubr" package was utilized to visualize the variations. Additionally, we employed CIBERSORT to examine immune cell infiltration abundance.
A prognostic prediction model was constructed using five LncRNAs. The high-risk group displayed a shorter overall survival and progression-free survival (P<0.05). The concordance index was calculated as 0.704 (95.
0.654-0.754). GSEA analysis reveals that high risk group is associated with the cell cycle pathway and steroid hormone biosynthesis pathway, while the low-risk group is associated with hematopoietic cell pathway and allograft rejection pathway. Immune cell infiltration analysis indicated associations between the prognostic model and activated T cells CD4 memory, T cells CD8, etc.
The risk model of Disulfidptosis-related LncRNAs can predict the prognosis of LUAD and evaluate the immune infiltration, providing a new direction for the treatment of LUAD.
基于与二硫键介导的细胞焦亡相关的长链非编码RNA(LncRNAs)构建风险模型,以预测肺腺癌(LUAD)的预后并评估其免疫浸润情况。
本研究采用生物信息学方法。研究于2023年3月29日在中国广州的广州中医药大学开展,并于2023年7月1日结束。从TCGA数据库收集LUAD特异性转录组数据。首先使用共表达分析初步筛选与二硫键介导的细胞焦亡相关的LncRNAs,随后使用Lasso回归和Cox回归进行筛选以鉴定LncRNAs。随后构建预后预测模型。为评估该模型,采用了生存分析、受试者工作特征曲线和校准曲线。为评估肿瘤微环境,使用了“estimate”软件包,同时使用“ggpubr”软件包可视化变化情况。此外,我们采用CIBERSORT检测免疫细胞浸润丰度。
使用5个LncRNAs构建了预后预测模型。高风险组的总生存期和无进展生存期较短(P<0.05)。一致性指数计算为0.704(95%置信区间:0.654 - 0.754)。基因集富集分析(GSEA)显示,高风险组与细胞周期途径和类固醇激素生物合成途径相关,而低风险组与造血细胞途径和同种异体移植排斥途径相关。免疫细胞浸润分析表明预后模型与活化的CD4记忆T细胞、CD8 T细胞等之间存在关联。
二硫键介导的细胞焦亡相关LncRNAs的风险模型可以预测LUAD的预后并评估免疫浸润情况,为LUAD的治疗提供了新的方向。