Suppr超能文献

预测宫颈癌严重放射性淋巴细胞减少症和生存的肠剂量体积。

Predictive value of bowel dose-volume for severe radiation-induced lymphopenia and survival in cervical cancer.

机构信息

Department of Radiotherapy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.

Department of Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Front Immunol. 2024 Nov 1;15:1459206. doi: 10.3389/fimmu.2024.1459206. eCollection 2024.

Abstract

BACKGROUND

Radiation-induced lymphopenia (RIL) is closely related to the prognosis of cervical cancer patients and may affect the efficacy of immune checkpoint inhibitors (ICIs). However, the factors influencing RIL are not very clear. In addition to bone marrow (BM) dose-volume, animal studies indicate radiation-induced bowel injury may be a more crucial factor. Further clarification of the correlation between RIL and bowel dose-volume is important for cervical cancer treatment.

METHODS

Cervical cancer patients treated with postoperative radiotherapy or radical radiotherapy were eligible for this retrospective study. Clinical characteristics, dose parameters of bowel and BM, planning target volume (PTV) size, overall survival (OS) and progression-free survival (PFS) were recorded. The absolute lymphocyte count<0.5×10/L at radiotherapy end was defined as severe RIL (sRIL). Hazard ratio (HR) and 95% confidence interval (Cl)were estimated using Cox regression models. Survival curve was plotted using the Kaplan-Meier method. On this basis, the receiver operating characteristics (ROC) curve was used to calculate the area under the curve (AUC) for radiation parameters with sRIL as the state variable.

RESULT

A total of 118 cervical cancer patients were included in this study, with a median follow-up time of 57.6 months. In multivariable Cox regression analysis, international Federation of Gynecology and obstetrics (FIGO) stage (HR, 11.806; 95% CI, 3.256-42.809; p<0.001), concurrent chemotherapy (HR, 0.200; 95% CI, 0.054-0.748; p=0.017), sRIL after radiotherapy (HR, 6.009; 95% CI, 1.361-26.539; p=0.018), and pathological type (HR, 2.261; 95% CI, 1.043-4.901; p=0.039) were significantly correlated with OS. Patients with sRIL had significantly decreased OS (79.1% vs 94.1%; HR, 3.81; 95%CI, 1.46-9.92; p=0.023). In binary logistic regression analysis, sRIL was significantly correlated with bowel V45 (Odds radio (OR), 1.025; 95%CI, 1.007-1.044; p=0.007), BM V10 (OR, 0.987; 95%CI, 0.978-0.997; p=0.011), BM V20 (OR, 1.017; 95%CI, 1.002-1.031, p=0.027), and PTV size (OR, 0.998; 95%CI, 0.996-1.000; p=0.026). The ROC curve showed, bowel V45 (AUC=0.787, p<0.001) was the best indicator for predicting sRIL.

CONCLUSION

SRIL after radiotherapy could significantly predict decreased OS. In addition, sRIL is associated with higher bowel, BM dose-volume, PTV size, indicating that the bowel may be an important organ leading to an increased risk of sRIL.

摘要

背景

放疗引起的淋巴细胞减少症(RIL)与宫颈癌患者的预后密切相关,可能影响免疫检查点抑制剂(ICI)的疗效。然而,影响 RIL 的因素并不十分清楚。除了骨髓(BM)剂量-体积外,动物研究表明,放射性肠炎损伤可能是一个更关键的因素。进一步明确 RIL 与肠道剂量-体积的相关性对宫颈癌的治疗具有重要意义。

方法

符合条件的宫颈癌患者为术后放疗或根治性放疗后。记录临床特征、肠道和 BM 的剂量参数、计划靶区(PTV)大小、总生存(OS)和无进展生存(PFS)。放疗结束时绝对淋巴细胞计数<0.5×10/L 定义为严重 RIL(sRIL)。使用 Cox 回归模型估计风险比(HR)和 95%置信区间(Cl)。使用 Kaplan-Meier 方法绘制生存曲线。在此基础上,用受试者工作特征(ROC)曲线计算以 sRIL 为状态变量的放射学参数的曲线下面积(AUC)。

结果

本研究共纳入 118 例宫颈癌患者,中位随访时间为 57.6 个月。多变量 Cox 回归分析显示,国际妇产科联合会(FIGO)分期(HR,11.806;95%CI,3.256-42.809;p<0.001)、同期化疗(HR,0.200;95%CI,0.054-0.748;p=0.017)、放疗后 sRIL(HR,6.009;95%CI,1.361-26.539;p=0.018)和病理类型(HR,2.261;95%CI,1.043-4.901;p=0.039)与 OS 显著相关。sRIL 患者的 OS 明显降低(79.1%vs94.1%;HR,3.81;95%CI,1.46-9.92;p=0.023)。二项逻辑回归分析显示,sRIL 与肠道 V45(比值比(OR),1.025;95%CI,1.007-1.044;p=0.007)、BM V10(OR,0.987;95%CI,0.978-0.997;p=0.011)、BM V20(OR,1.017;95%CI,1.002-1.031;p=0.027)和 PTV 大小(OR,0.998;95%CI,0.996-1.000;p=0.026)显著相关。ROC 曲线显示,肠道 V45(AUC=0.787,p<0.001)是预测 sRIL 的最佳指标。

结论

放疗后 sRIL 可显著预测 OS 降低。此外,sRIL 与较高的肠道、BM 剂量-体积、PTV 大小相关,表明肠道可能是导致 sRIL 风险增加的重要器官。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f9e/11563826/e3dee1d23641/fimmu-15-1459206-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验