Lipiński Michał, Mischaikow Konstantin, Mrozek Marian
Intitute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
Dioscuri Centre in TDA, Institute of Mathematics, Polish Academy of Sciences (IMPAN), ul. Śniadeckich 8, 00-656 Warszawa, Poland.
Qual Theory Dyn Syst. 2025;24(1):5. doi: 10.1007/s12346-024-01144-3. Epub 2024 Nov 15.
Motivated by the study of recurrent orbits and dynamics within a Morse set of a Morse decomposition we introduce the concept of Morse predecomposition of an isolated invariant set within the setting of both combinatorial and classical dynamical systems. While Morse decomposition summarizes solely the gradient part of a dynamical system, the developed generalization extends to the recurrent component as well. In particular, a chain recurrent set, which is indecomposable in terms of Morse decomposition, can be represented more finely in the Morse predecomposition framework. This generalization is achieved by forgoing the poset structure inherent to Morse decomposition and relaxing the notion of connection between Morse sets (elements of Morse decomposition) in favor of what we term 'links'. We prove that a Morse decomposition is a special case of Morse predecomposition indexed by a poset. Additionally, we show how a Morse predecomposition may be condensed back to retrieve a Morse decomposition.
受莫尔斯分解的莫尔斯集内递归轨道和动力学研究的启发,我们在组合动力系统和经典动力系统的背景下引入了孤立不变集的莫尔斯预分解概念。虽然莫尔斯分解仅总结了动力系统的梯度部分,但所发展的推广也扩展到了递归部分。特别地,一个在莫尔斯分解方面不可分解的链递归集,在莫尔斯预分解框架中可以得到更精细的表示。这种推广是通过放弃莫尔斯分解固有的偏序集结构,并放宽莫尔斯集(莫尔斯分解的元素)之间的连接概念,转而采用我们所称的“链”来实现的。我们证明莫尔斯分解是由偏序集索引的莫尔斯预分解的特殊情况。此外,我们展示了如何将莫尔斯预分解压缩回去以恢复莫尔斯分解。