Suppr超能文献

贝叶斯隐马尔可夫模型揭示的运动想象脑状态及动态转换模式

Brain state and dynamic transition patterns of motor imagery revealed by the bayes hidden markov model.

作者信息

Liu Yunhong, Yu Shiqi, Li Jia, Ma Jiwang, Wang Fei, Sun Shan, Yao Dezhong, Xu Peng, Zhang Tao

机构信息

Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China.

The Artificial Intelligence Group, Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2455-2470. doi: 10.1007/s11571-024-10099-9. Epub 2024 Mar 27.

Abstract

UNLABELLED

Motor imagery (MI) is a high-level cognitive process that has been widely applied to brain-computer inference (BCI) and motor recovery. In practical applications, however, huge individual differences and unclear neural mechanisms have seriously hindered the application of MI and BCI systems. Thus, it is urgently needed to explore MI from a new perspective. Here, we applied a hidden Markov model (HMM) to explore the dynamic organization patterns of left- and right-hand MI tasks. Eleven distinct HMM states were identified based on MI-related EEG data. We found that these states can be divided into three metastates by clustering analysis, showing a highly organized structure. We also assessed the probability activation of each HMM state across time. The results showed that the state probability activation of task-evoked have similar trends to that of event-related desynchronization/synchronization (ERD/ERS). By comparing the differences in temporal features of HMM states between left- and right-hand MI, we found notable variations in fractional occupancy, mean life time, mean interval time, and transition probability matrix across stages and states. Interestingly, we found that HMM states activated in the left occipital lobe had higher occupancy during the left-hand MI task, and conversely, during the right-hand MI task, HMM states activated in the right occipital lobe had higher occupancy. Moreover, significant correlations were observed between BCI performance and features of HMM states. Taken together, our findings explored dynamic networks underlying the MI-related process and provided a complementary understanding of different MI tasks, which may contribute to improving the MI-BCI systems.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-024-10099-9.

摘要

未标注

运动想象(MI)是一种高级认知过程,已广泛应用于脑机接口(BCI)和运动恢复。然而,在实际应用中,巨大的个体差异和不明晰的神经机制严重阻碍了MI和BCI系统的应用。因此,迫切需要从新的角度探索MI。在此,我们应用隐马尔可夫模型(HMM)来探索左右手MI任务的动态组织模式。基于与MI相关的脑电图数据识别出11个不同的HMM状态。我们发现,通过聚类分析,这些状态可分为三个亚状态,呈现出高度有组织的结构。我们还评估了每个HMM状态随时间的概率激活情况。结果表明,任务诱发的状态概率激活与事件相关去同步化/同步化(ERD/ERS)具有相似的趋势。通过比较左右手MI之间HMM状态的时间特征差异,我们发现在不同阶段和状态下,分数占有率、平均寿命、平均间隔时间和转移概率矩阵存在显著差异。有趣的是,我们发现左手MI任务期间,在左枕叶激活的HMM状态具有更高的占有率,相反,在右手MI任务期间,在右枕叶激活的HMM状态具有更高的占有率。此外,观察到BCI性能与HMM状态特征之间存在显著相关性。综上所述,我们的研究结果探索了MI相关过程背后的动态网络,并为不同的MI任务提供了补充理解,这可能有助于改进MI-BCI系统。

补充信息

在线版本包含可在10.1007/s11571-024-10099-9获取的补充材料。

相似文献

本文引用的文献

4
Robust Bayesian Estimation of EEG-Based Brain Causality Networks.基于 EEG 的大脑因果关系网络的稳健贝叶斯估计。
IEEE Trans Biomed Eng. 2023 Jun;70(6):1879-1890. doi: 10.1109/TBME.2022.3231627. Epub 2023 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验