Zhang Xi, Yang Lan, Lu Jiayu, Yuan Yuting, Li Dandan, Zhang Hui, Yao Rong, Xiang Jie, Wang Bin
School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Transl Psychiatry. 2024 Dec 30;14(1):507. doi: 10.1038/s41398-024-03212-3.
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes. This study employed hidden Markov model (HMM) analysis to delve deeper into the moment-to-moment temporal patterns of brain activity in BD. We utilized resting-state functional magnetic resonance imaging (rs-fMRI) data from 43 BD patients and 51 controls to evaluate the altered dynamic spatiotemporal architecture of the whole-brain network and identify unique activation patterns in BD. Additionally, we investigated the relationship between altered brain dynamics and structural disruption through the ridge regression (RR) algorithm. The results demonstrated that BD spent less time in a hyperconnected state with higher network efficiency and lower segregation. Conversely, BD spent more time in anticorrelated states featuring overall negative correlations, particularly among pairs of default mode network (DMN) and sensorimotor network (SMN), DMN and insular-opercular ventral attention networks (ION), subcortical network (SCN) and SMN, as well as SCN and ION. Interestingly, the hypoactivation of the cognitive control network in BD may be associated with the structural disruption primarily situated in the frontal and parietal lobes. This study investigated the dynamic mechanisms of brain network dysfunction in BD and offered fresh perspectives for exploring the physiological foundation of altered brain dynamics.
双相情感障碍(BD)是一种神经精神疾病,其特征是情绪严重紊乱和波动。动态功能连接性(dFC)有潜力更准确地捕捉BD中情绪和认知的演变过程。然而,先前对dFC的研究通常集中在较大的时间尺度上,限制了对瞬时变化的敏感性。本研究采用隐马尔可夫模型(HMM)分析,更深入地探究BD患者大脑活动的逐时时间模式。我们利用43名BD患者和51名对照的静息态功能磁共振成像(rs-fMRI)数据,评估全脑网络改变的动态时空结构,并识别BD中独特的激活模式。此外,我们通过岭回归(RR)算法研究了大脑动力学改变与结构破坏之间的关系。结果表明,BD处于具有较高网络效率和较低分离度的超连接状态的时间较少。相反,BD在以整体负相关为特征的反相关状态下花费的时间更多,特别是在默认模式网络(DMN)和感觉运动网络(SMN)、DMN和岛叶-眶额腹侧注意网络(ION)、皮层下网络(SCN)和SMN以及SCN和ION之间的配对中。有趣的是,BD中认知控制网络的低激活可能与主要位于额叶和顶叶的结构破坏有关。本研究探讨了BD中脑网络功能障碍的动态机制,并为探索大脑动力学改变的生理基础提供了新的视角。