Suppr超能文献

基于创新信息潜能指数的脑电图情感识别

EEG emotion recognition based on an innovative information potential index.

作者信息

Goshvarpour Atefeh, Goshvarpour Ateke

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.

Department of Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan Iran.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2177-2191. doi: 10.1007/s11571-024-10077-1. Epub 2024 Feb 28.

Abstract

The recent exceptional demand for emotion recognition systems in clinical and non-medical applications has attracted the attention of many researchers. Since the brain is the primary object of understanding emotions and responding to them, electroencephalogram (EEG) signal analysis is one of the most popular approaches in affect classification. Previously, different approaches have been presented to benefit from brain connectivity information. We envisioned analyzing the interactions between brain electrodes with the information potential and providing a new index to quantify the connectivity matrix. The current study proposed a simple measure based on the cross-information potential between pairs of EEG electrodes to characterize emotions. This measure was tested for different EEG frequency bands to realize which EEG waves could be fruitful in recognizing emotions. Support vector machine and k-nearest neighbor (kNN) were implemented to classify four emotion categories based on two-dimensional valence and arousal space. Experimental results on the Database for Emotion Analysis using Physiological signals revealed a maximum accuracy of 90.14%, a sensitivity of 89.71%, and an F-score of 94.57% using kNN. The gamma frequency band obtained the highest recognition rates. Furthermore, low valence-low arousal was classified more effectively than other classes.

摘要

近期,临床和非医疗应用中对情感识别系统的特殊需求引起了众多研究人员的关注。由于大脑是理解情感并对其做出反应的主要对象,脑电图(EEG)信号分析是情感分类中最受欢迎的方法之一。此前,人们提出了不同的方法来利用大脑连接信息。我们设想通过信息势分析脑电电极之间的相互作用,并提供一种新的指标来量化连接矩阵。当前的研究提出了一种基于EEG电极对之间交叉信息势的简单度量来表征情感。针对不同的EEG频段测试了该度量,以确定哪些EEG波在情感识别中可能富有成效。基于二维效价和唤醒空间,采用支持向量机和k近邻(kNN)对四种情感类别进行分类。使用生理信号进行情感分析数据库的实验结果表明,使用kNN时,最高准确率为90.14%,灵敏度为89.71%,F值为94.57%。伽马频段获得了最高的识别率。此外,低效价-低唤醒比其他类别分类得更有效。

相似文献

1
EEG emotion recognition based on an innovative information potential index.基于创新信息潜能指数的脑电图情感识别
Cogn Neurodyn. 2024 Oct;18(5):2177-2191. doi: 10.1007/s11571-024-10077-1. Epub 2024 Feb 28.

本文引用的文献

1
EEG emotion recognition using improved graph neural network with channel selection.基于通道选择的改进图神经网络的脑电图情感识别
Comput Methods Programs Biomed. 2023 Apr;231:107380. doi: 10.1016/j.cmpb.2023.107380. Epub 2023 Feb 1.
8
Time-Frequency Representation and Convolutional Neural Network-Based Emotion Recognition.基于时频表示和卷积神经网络的情绪识别。
IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2901-2909. doi: 10.1109/TNNLS.2020.3008938. Epub 2021 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验