Suppr超能文献

通过粘性MXene调制界面焊接诱导的核壳异质互锁可拉伸导电纤维

Core-Sheath Heterogenous Interlocked Stretchable Conductive Fiber Induced by Adhesive MXene Modulated Interfacial Soldering.

作者信息

Hou Zhichao, He Yifan, Qu Lijun, Zhang Xueji, Fan Tingting, Miao Jinlei

机构信息

Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China.

School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China.

出版信息

Nano Lett. 2024 Nov 27;24(47):15142-15150. doi: 10.1021/acs.nanolett.4c04731. Epub 2024 Nov 18.

Abstract

Whereas high electrical conductivity and mechanical stretchability are both essentially required for flexible electronics, simultaneously achieving them remains a great challenge due to the "trade-off" effect. Herein, an ultrastretchable conductor with core-sheath heterogeneous interlocked structure was developed, induced by interfacial soldering silver nanowires (AgNWs) which gradually evolved into elastic conductive fiber. Adhesive polydopamine-functionalized MXene (PDM) was proposed as an interfacial solder to assemble AgNWs along fibers while induced strong cold-welding effect soldered them into superelastic interconnected network. coaxial heterogeneous interlocking between core AgNWs and sheath PDM network gradually formed during the interfacial soldering process, which enables elastic conductor simultaneously owning large mechanical stretchability and high electrical conductivity. Stretchable conductive fiber with core-sheath heterogeneous interlocking structure not only exhibits excellent electrical conductivity (1.13 × 10 S/m) but also could maintain stability (Δ/ < 0.19) even under large mechanical deformations (300%). Ultrastretchable fibrous conductor with core-sheath heterogeneous interlocked microstructure induced by adhesive PDM interfacial soldering holds great promise in soft electronics.

摘要

虽然高导电性和机械拉伸性对于柔性电子器件来说都是必不可少的,但由于“权衡”效应,同时实现这两点仍然是一个巨大的挑战。在此,我们开发了一种具有核壳异质互锁结构的超拉伸导体,它是由界面焊接银纳米线(AgNWs)诱导形成的,这些银纳米线逐渐演变成弹性导电纤维。我们提出用粘附性聚多巴胺功能化的MXene(PDM)作为界面焊料,沿着纤维组装AgNWs,同时诱导强烈的冷焊效应,将它们焊接成超弹性互连网络。在界面焊接过程中,核部AgNWs与壳部PDM网络之间逐渐形成同轴异质互锁结构,这使得弹性导体同时具备大的机械拉伸性和高导电性。具有核壳异质互锁结构的可拉伸导电纤维不仅具有优异的导电性(1.13×10 S/m),而且即使在大的机械变形(300%)下也能保持稳定性(Δ/ < 0.19)。由粘附性PDM界面焊接诱导形成的具有核壳异质互锁微观结构的超拉伸纤维状导体在柔性电子学领域具有广阔的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验