Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
PLoS Biol. 2024 Nov 18;22(11):e3002879. doi: 10.1371/journal.pbio.3002879. eCollection 2024 Nov.
It is widely believed that information storage in neuronal circuits involves nanoscopic structural changes at synapses, resulting in the formation of synaptic engrams. However, direct evidence for this hypothesis is lacking. To test this conjecture, we combined chemical potentiation, functional analysis by paired pre-postsynaptic recordings, and structural analysis by electron microscopy (EM) and freeze-fracture replica labeling (FRL) at the rodent hippocampal mossy fiber synapse, a key synapse in the trisynaptic circuit of the hippocampus. Biophysical analysis of synaptic transmission revealed that forskolin-induced chemical potentiation increased the readily releasable vesicle pool size and vesicular release probability by 146% and 49%, respectively. Structural analysis of mossy fiber synapses by EM and FRL demonstrated an increase in the number of vesicles close to the plasma membrane and the number of clusters of the priming protein Munc13-1, indicating an increase in the number of both docked and primed vesicles. Furthermore, FRL analysis revealed a significant reduction of the distance between Munc13-1 and CaV2.1 Ca2+ channels, suggesting reconfiguration of the channel-vesicle coupling nanotopography. Our results indicate that presynaptic plasticity is associated with structural reorganization of active zones. We propose that changes in potential nanoscopic organization at synaptic vesicle release sites may be correlates of learning and memory at a plastic central synapse.
人们普遍认为,神经元回路中的信息存储涉及突触处的纳米级结构变化,从而形成突触记忆痕迹。然而,这一假设缺乏直接证据。为了验证这一假说,我们在啮齿动物海马苔藓纤维突触(海马三突触回路中的关键突触)中结合了化学增敏作用、通过配对的突触前-突触后记录进行的功能分析,以及电子显微镜(EM)和冷冻断裂复型标记(FRL)的结构分析。对突触传递的生物物理分析表明,福斯可林诱导的化学增敏作用使可释放囊泡库的大小和囊泡释放概率分别增加了 146%和 49%。通过 EM 和 FRL 对苔藓纤维突触的结构分析表明,靠近质膜的囊泡数量和引发蛋白 Munc13-1 的簇数量增加,表明停泊和引发囊泡的数量都增加了。此外,FRL 分析显示 Munc13-1 和 CaV2.1 Ca2+通道之间的距离显著减小,表明通道-囊泡偶联纳米拓扑结构的重新配置。我们的结果表明,突触前可塑性与活性区的结构重排有关。我们提出,突触囊泡释放位点潜在纳米组织的变化可能是可塑性中枢突触学习和记忆的相关因素。