Zhao Zhi Liang, Yang Shaoxuan, Wang Shensong, Zhang Zhe, Zhao Liang, Wang Qi, Zhang Xinyi
National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan, 528200, P. R. China.
Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, P. R. China.
Adv Sci (Weinh). 2025 Jan;12(2):e2411705. doi: 10.1002/advs.202411705. Epub 2024 Nov 18.
The direct electrochemical reduction of nitrate to ammonia is an efficient and environmentally friendly technology, however, developing electrocatalysts with high activity and selectivity remains a great challenge. Single-atom catalysts demonstrate unique properties and exceptional performance across a range of catalytic reactions, especially those that encompass multi-step processes. Herein, a straightforward and cost-effective approach is introduced for synthesizing single-atom dispersed Rh on porous TiO spheres (Rh-TiO), which functions as an efficient electrocatalyst for the electroreduction of NO to NH. The synthesized Rh-TiO catalyst achieve a maximum NH Faradaic efficiency (FE) of 94.7% and an NH yield rate of 29.98 mg h mg at -0.5 V versus RHE in a 0.1 M KOH+0.1 M KNO electrolyte, significantly outperforming not only undoped TiO but also Ru, Pd, and Ir single-atom doped titania catalysts. Density functional theory calculations reveal that the incorporation of Rh single atom significantly enhances charge transfer between adsorbed NO and the active site. The Rh atoms not only serve as the highly active site for electrochemical nitrate reduction reaction (NORR), but also activates the adjacent Ti sites through optimizating the electronic structure, thereby reducing the energy barrier of the rate-limiting step. Consequently, this results in a substantial enhancement in electrochemical NORR performance. Furthermore, this synthetic method has the potential to be extended to other single-atom catalysts and scaled up for commercial applications.
将硝酸盐直接电化学还原为氨是一项高效且环保的技术,然而,开发具有高活性和选择性的电催化剂仍然是一个巨大的挑战。单原子催化剂在一系列催化反应中表现出独特的性质和卓越的性能,尤其是那些涉及多步过程的反应。在此,介绍了一种简单且经济高效的方法来合成多孔TiO球上单原子分散的Rh(Rh-TiO),其作为将NO电还原为NH的高效电催化剂。在0.1 M KOH + 0.1 M KNO电解液中,相对于可逆氢电极(RHE)在-0.5 V时,合成的Rh-TiO催化剂实现了94.7%的最大NH法拉第效率(FE)和29.98 mg h mg的NH产率,不仅显著优于未掺杂的TiO,还优于Ru、Pd和Ir单原子掺杂的二氧化钛催化剂。密度泛函理论计算表明,Rh单原子的掺入显著增强了吸附的NO与活性位点之间的电荷转移。Rh原子不仅作为电化学硝酸盐还原反应(NORR)的高活性位点,还通过优化电子结构激活相邻的Ti位点,从而降低限速步骤的能量势垒。因此,这导致电化学NORR性能大幅提高。此外,这种合成方法有潜力扩展到其他单原子催化剂并扩大规模用于商业应用。