Li Dandan, Wu Song, Yan Jingwen, Zhao Donglin, Li Quan, Li Ruizhi, Fan Guangyin
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
J Colloid Interface Sci. 2025 Jan;677(Pt B):853-861. doi: 10.1016/j.jcis.2024.08.105. Epub 2024 Aug 15.
Electrocatalytic nitrate reduction reaction presents a promising avenue for environmentally friendly ammonia (NH) synthesis and wastewater treatment. An essential aspect to consider is the meticulous design of electrocatalysts. This study explores the utilization of a Ni-Co alloy nanosheet-decorated three-dimensional titanium dioxide (3D-TiO) nanobelts electrodeposited on titanium meshes (NiCo@TiO/TM) for efficient electrocatalytic NH production. The optimized NiCo@TiO/TM electrode achieves a significant NH yield of 676.3 ± 27.1 umol h cm with an impressive Faradaic efficiency (FE) of 95.1 % ± 2.1 % in a 0.1 M KOH solution containing 0.1 M NO at -0.4 V versus the reversible hydrogen electrode. Additionally, the electrode demonstrates exceptional electrochemical activity for NH synthesis in simulated wastewater, delivering an outstanding NH yield of 751.6 ± 44.3 umol h cm with a FE of 96.8 % ± 0.4 % at the same potential of -0.4 V. Moreover, the electrode exhibits minimal variation in current density, NH yields and FEs throughout the 24-h stability test and the 20-cycle test, demonstrating its excellent stability and durability. This study offers a straightforward electrodeposited approach for the development of 3D-nanostructured alloys as catalysts for NH electrosynthesis from nitrates at room temperature.
电催化硝酸盐还原反应为环境友好型氨合成及废水处理提供了一条很有前景的途径。需要考虑的一个重要方面是电催化剂的精心设计。本研究探索了一种电沉积在钛网上的镍钴合金纳米片修饰的三维二氧化钛(3D-TiO₂)纳米带(NiCo@TiO₂/TM)用于高效电催化氨生产的情况。优化后的NiCo@TiO₂/TM电极在相对于可逆氢电极-0.4V的含0.1M硝酸盐的0.1M氢氧化钾溶液中实现了676.3±27.1μmol h⁻¹ cm⁻²的显著氨产率,法拉第效率(FE)高达95.1%±2.1%。此外,该电极在模拟废水中对氨合成表现出优异的电化学活性,在相同的-0.4V电位下,氨产率高达751.6±44.3μmol h⁻¹ cm⁻²,FE为96.8%±0.4%。而且,在24小时稳定性测试和20次循环测试中,该电极的电流密度、氨产率和FE变化极小,显示出其优异的稳定性和耐久性。本研究提供了一种直接的电沉积方法,用于开发三维纳米结构合金作为室温下从硝酸盐电合成氨的催化剂。