Suppr超能文献

体内光感受器碱基编辑改善了小鼠 E150K 视紫红质常染色体隐性遗传视网膜色素变性。

In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice.

机构信息

Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92617.

Department of Physiology and Biophysics, University of California, Irvine, CA 92617.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2416827121. doi: 10.1073/pnas.2416827121. Epub 2024 Nov 18.

Abstract

Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death. Therefore, correction of deleterious rhodopsin mutations could rescue inherited retinal degeneration, as demonstrated for other visual genes such as and In this study, we describe a CRISPR/Cas9 adenine base editing strategy to correct the E150K mutation and demonstrate precise in vivo editing in a -E150K mouse model of autosomal recessive retinitis pigmentosa (RP). Using ultraviolet-visible spectroscopy, mass spectrometry, and the G-protein activation assay, we characterized wild-type rhodopsin and rhodopsin variants containing bystander base edits. Subretinal injection of dual-adeno-associated viruses delivering our base editing strategy yielded up to 44% correction in homozygous -E150K mice. Injection at postnatal day 15, but not later time points, restored rhodopsin expression, partially rescued retinal function, and partially preserved retinal structure. These findings demonstrate that in vivo base editing can restore the function of mutated structural and functional proteins in animal models of disease, including rhodopsin-associated RP and suggest that the timing of gene-editing is a crucial determinant of successful treatment outcomes for degenerative genetic diseases.

摘要

视紫红质,典型的 A 类 G 蛋白偶联受体,是对光高度敏感的受体,使光感受器中的光转化成为可能。视紫红质不仅起着感觉作用,而且作为杆状外节盘的主要成分,起着结构作用,占盘膜蛋白质含量的 90%以上。导致结构或功能异常的突变,包括常染色体隐性 E150K 突变,导致杆状细胞功能障碍和死亡。因此,如对其他视觉基因(如 和 )所示,纠正有害的视紫红质突变可以挽救遗传性视网膜变性。在这项研究中,我们描述了一种 CRISPR/Cas9 腺嘌呤碱基编辑策略,以纠正 E150K 突变,并在常染色体隐性视网膜色素变性(RP)的 -E150K 小鼠模型中证明了精确的体内编辑。通过紫外可见光谱、质谱和 G 蛋白激活测定,我们对野生型视紫红质和含有旁观者碱基编辑的视紫红质变体进行了表征。双腺相关病毒的亚视网膜注射我们的碱基编辑策略,在纯合 -E150K 小鼠中产生高达 44%的校正。在出生后第 15 天注射,但不是在稍后的时间点注射,恢复了视紫红质的表达,部分挽救了视网膜功能,并部分保留了视网膜结构。这些发现表明,体内碱基编辑可以恢复疾病动物模型中突变的结构和功能蛋白的功能,包括视紫红质相关的 RP,并表明基因编辑的时间是退行性遗传疾病成功治疗结果的关键决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3595/11621631/bac1f4347992/pnas.2416827121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验