文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用内源性小 RNA 结合蛋白提高 Prime 编辑效率。

Improving prime editing with an endogenous small RNA-binding protein.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.

出版信息

Nature. 2024 Apr;628(8008):639-647. doi: 10.1038/s41586-024-07259-6. Epub 2024 Apr 3.


DOI:10.1038/s41586-024-07259-6
PMID:38570691
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11023932/
Abstract

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.

摘要

先导编辑通过将模板序列反向转录到 CRISPR-Cas 引导 RNA 的 3' 末端,实现对基因组的精确修饰。为了鉴定先导编辑的细胞决定因素,我们开发了可扩展的先导编辑报告器,并进行了全基因组 CRISPR 干扰筛选。从这些筛选中,一个单一的因素成为了先导编辑的最强介导因素:小 RNA 结合外切核酸酶保护因子 La。进一步的研究表明,La 促进了各种方法(PE2、PE3、PE4 和 PE5)、编辑类型(取代、插入和缺失)、内源性基因座和细胞类型的先导编辑,但对依赖标准、未扩展的引导 RNA 的基因组编辑方法没有一致的影响。先前的工作表明,La 结合 RNA 聚合酶 III 转录物 3' 末端的多尿嘧啶序列。我们发现 La 与多聚尿嘧啶化的先导编辑引导 RNA(pegRNA)的 3' 末端在功能上相互作用。根据这些结果,我们开发了一种与 La 的 RNA 结合、N 端结构域融合的先导编辑蛋白 (PE7)。该编辑器提高了表达 pegRNA 和工程 pegRNA (epegRNA) 以及针对 La 结合优化的合成 pegRNA 的先导编辑效率。总之,我们的研究结果提供了关键的见解,说明先导编辑组件如何与细胞环境相互作用,并提出了在其中稳定外源小 RNA 的一般策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/3cadb9224a73/41586_2024_7259_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/cb328e93d6e1/41586_2024_7259_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/89f08f8d2a89/41586_2024_7259_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/ecd742900146/41586_2024_7259_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/6f3ac706b1d7/41586_2024_7259_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/e26b587738fa/41586_2024_7259_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/51f4eeece322/41586_2024_7259_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/08a450234dfb/41586_2024_7259_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/03d0a9a9ab1f/41586_2024_7259_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/59369e0c925b/41586_2024_7259_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/a63bdd3da272/41586_2024_7259_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/79c334606388/41586_2024_7259_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/6c8d3d958be4/41586_2024_7259_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/2085a1c365b3/41586_2024_7259_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/5b3b70b41779/41586_2024_7259_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/b1856bff6457/41586_2024_7259_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/3cadb9224a73/41586_2024_7259_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/cb328e93d6e1/41586_2024_7259_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/89f08f8d2a89/41586_2024_7259_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/ecd742900146/41586_2024_7259_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/6f3ac706b1d7/41586_2024_7259_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/e26b587738fa/41586_2024_7259_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/51f4eeece322/41586_2024_7259_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/08a450234dfb/41586_2024_7259_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/03d0a9a9ab1f/41586_2024_7259_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/59369e0c925b/41586_2024_7259_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/a63bdd3da272/41586_2024_7259_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/79c334606388/41586_2024_7259_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/6c8d3d958be4/41586_2024_7259_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/2085a1c365b3/41586_2024_7259_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/5b3b70b41779/41586_2024_7259_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/b1856bff6457/41586_2024_7259_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e523/11023932/3cadb9224a73/41586_2024_7259_Fig16_ESM.jpg

相似文献

[1]
Improving prime editing with an endogenous small RNA-binding protein.

Nature. 2024-4

[2]
Engineered pegRNAs improve prime editing efficiency.

Nat Biotechnol. 2022-3

[3]
Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA.

Mol Ther. 2022-9-7

[4]
A web tool for the design of prime-editing guide RNAs.

Nat Biomed Eng. 2021-2

[5]
Precise genomic deletions using paired prime editing.

Nat Biotechnol. 2022-2

[6]
Prime Editing Guide RNA Design Automation Using PINE-CONE.

ACS Synth Biol. 2021-2-19

[7]
An engineered prime editor with enhanced editing efficiency in plants.

Nat Biotechnol. 2022-9

[8]
Enhanced prime editing systems by manipulating cellular determinants of editing outcomes.

Cell. 2021-10-28

[9]
Extended pegRNAs enhance the editing capability of Prime editing.

Trends Biotechnol. 2025-1

[10]
Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors.

Biochemistry. 2023-12-19

引用本文的文献

[1]
Genetic variants affecting RNA stability influence complex traits and disease risk.

Nat Genet. 2025-9-5

[2]
Advances in large-scale DNA engineering with the CRISPR system.

Exp Mol Med. 2025-9-1

[3]
A streamlined base editor engineering strategy to reduce bystander editing.

Nat Commun. 2025-8-30

[4]
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.

Trends Cancer. 2025-8-28

[5]
Prime Editing for Crop Improvement: A Systematic Review of Optimization Strategies and Advanced Applications.

Genes (Basel). 2025-8-16

[6]
Prime Editing Modification with FEN1 Improves F508del Variant Editing in the Gene in Airway Basal Cells.

Int J Mol Sci. 2025-8-18

[7]
Systematic pegRNA design with PRIDICT2.0 and ePRIDICT for efficient prime editing.

Nat Protoc. 2025-8-14

[8]
Optimized Ribonucleoprotein Complexes Enhance Prime Editing Efficiency in Zebrafish.

Animals (Basel). 2025-8-6

[9]
Genome Editing Breeding with CRISPR-Cas Nucleases, Base Editors, and Prime Editors.

Animals (Basel). 2025-7-22

[10]
Divergent Mechanisms of H2AZ.1 and H2AZ.2 in PRC1-Mediated H2A Ubiquitination.

Cells. 2025-7-23

本文引用的文献

[1]
Chromatin context-dependent regulation and epigenetic manipulation of prime editing.

Cell. 2024-5-9

[2]
Phage-assisted evolution and protein engineering yield compact, efficient prime editors.

Cell. 2023-8-31

[3]
Epitope editing enables targeted immunotherapy of acute myeloid leukaemia.

Nature. 2023-9

[4]
Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency.

Nucleic Acids Res. 2023-7-21

[5]
Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs.

Protein Cell. 2023-4-21

[6]
Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants.

Nat Biotechnol. 2023-10

[7]
Prime editing for precise and highly versatile genome manipulation.

Nat Rev Genet. 2023-3

[8]
Designing and executing prime editing experiments in mammalian cells.

Nat Protoc. 2022-11

[9]
Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes.

J Mol Cell Biol. 2022-8-2

[10]
Enhancement of prime editing via xrRNA motif-joined pegRNA.

Nat Commun. 2022-4-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索