Yu Zhexiu, Qi Jianbo, Liu Shangbo, Zhao Xun, Huang Huaguo
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
Innovation Research Center of Satellite Application (IRCSA), Faculty of Geographical Science. Beijing Normal University, Beijing 100875, China.
J Environ Manage. 2024 Dec;372:123287. doi: 10.1016/j.jenvman.2024.123287. Epub 2024 Nov 17.
Area-based approach (ABA) has been widely employed for estimating forest aboveground biomass (AGB) using airborne laser scanning (ALS) data. However, its scalability is limited due to challenges in model generalization across different forest types and regions. The selection of sensitive variables from ALS data is crucial for constructing robust forest AGB estimation models, yet this selection varies significantly among forest types and regions. Traditionally, assessing the influence of variable selection is hindered by the lack of accurate reference forest AGB values. Computer simulation-based method provides a perspective for exploring these challenges. This study employs an individual-based forest growth process model, FORMIND, coupled with a 3D radiative transfer model (RTM), LESS, to evaluate the transferability of ABA-based forest AGB estimation models and the generalization of ALS-derived variables. We used six virtual 3D forest scenes and two real-world forest sites, representing a range of global forest types, along with their simulated ALS data, to develop a forest AGB estimation model using the random forest algorithm, which allowed us to analyze the importance of various variables. We assessed model transferability through cross-comparison. Additionally, we validated the model using field plots and ALS data collected from two distinct regions. The results showed that the canopy surface area and volume extracted using the α-shape algorithm and parameters fitted from the Weibull distribution are vital variables when using ALS for forest AGB estimation across forest types and regions. Incorporating these variables into the model significantly improves the accuracy of forest AGB estimation. The optimized model achieved a R of 0.945, a RMSE of 34.22 t/ha, and a MAE of 20.53 t/ha. Our study not only deepens the understanding of the relationship between forest vertical structural metrics and AGB but also highlights the potential of computer simulation as a tool for refining the estimation of forest structural parameters.
基于面积的方法(ABA)已被广泛用于利用机载激光扫描(ALS)数据估算森林地上生物量(AGB)。然而,由于在不同森林类型和区域之间进行模型泛化存在挑战,其可扩展性受到限制。从ALS数据中选择敏感变量对于构建稳健的森林AGB估算模型至关重要,但这种选择在不同森林类型和区域之间差异很大。传统上,由于缺乏准确的参考森林AGB值,变量选择的影响评估受到阻碍。基于计算机模拟的方法为探索这些挑战提供了一个视角。本研究采用基于个体的森林生长过程模型FORMIND,结合三维辐射传输模型(RTM)LESS,来评估基于ABA的森林AGB估算模型的可转移性以及ALS衍生变量的泛化性。我们使用了六个虚拟三维森林场景和两个真实世界的森林站点,代表了一系列全球森林类型,以及它们的模拟ALS数据,使用随机森林算法开发了一个森林AGB估算模型,这使我们能够分析各种变量的重要性。我们通过交叉比较评估模型的可转移性。此外,我们使用从两个不同区域收集的野外样地和ALS数据对模型进行了验证。结果表明,使用α形状算法提取的冠层表面积和体积以及从威布尔分布拟合的参数是在跨森林类型和区域使用ALS进行森林AGB估算时的重要变量。将这些变量纳入模型可显著提高森林AGB估算的准确性。优化后的模型的R值为0.945,RMSE为34.22吨/公顷,MAE为20.53吨/公顷。我们的研究不仅加深了对森林垂直结构指标与AGB之间关系的理解,还突出了计算机模拟作为一种完善森林结构参数估算工具的潜力。