文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于激光雷达衍生特征和机器学习算法的森林地上生物量总量及组分反演

Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms.

作者信息

Ma Jiamin, Zhang Wangfei, Ji Yongjie, Huang Jimao, Huang Guoran, Wang Lu

机构信息

College of Forestry, Southwest Forestry University, Kunming, China.

College of Geography and Ecotourism, Southwest Forestry University, Kunming, China.

出版信息

Front Plant Sci. 2023 Oct 26;14:1258521. doi: 10.3389/fpls.2023.1258521. eCollection 2023.


DOI:10.3389/fpls.2023.1258521
PMID:37954998
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10639141/
Abstract

Forest aboveground biomass (AGB) and its biomass components are key indicators for assessing forest ecosystem health, productivity, and carbon stocks. Light Detection and Ranging (LiDAR) technology has great advantages in acquiring the vertical structure of forests and the spatial distribution characteristics of vegetation. In this study, the 56 features extracted from airborne LiDAR point cloud data were used to estimate forest total and component AGB. Variable importance-in-projection values calculated through a partial least squares regression algorithm were utilized for LiDAR-derived feature ranking and optimization. Both leave-one-out cross-validation (LOOCV) and cross-validation methods were applied for validation of the estimated results. The results showed that four cumulative height percentiles ( , , and ), two height percentiles ( and ), and four height-related variables ( , , , and ) are ranked more frequently in the top 10 sensitive features for total and component forest AGB retrievals. Best performance was acquired by random forest (RF) algorithm, with 0.75, root mean square error (RMSE) = 22.93 Mg/ha, relative RMSE (rRMSE) = 25.30%, and mean absolute error (MAE) = 19.26 Mg/ha validated by the LOOCV method. For cross-validation results, is 0.67, RMSE is 24.56 Mg/ha, and rRMSE is 25.67%. The performance of support vector regression (SVR) for total AGB estimation is 0.66, RMSE = 26.75 Mg/ha, rRMSE = 28.62%, and MAE = 22.00 Mg/ha using LOOCV validation and 0.56, RMSE = 30.88 Mg/ha, and rRMSE = 31.41% by cross-validation. For the component AGB estimation, the accuracy from both RF and SVR algorithms was arranged as stem > bark > branch > leaf. The results confirmed the sensitivity of LiDAR-derived features to forest total and component AGBs. They also demonstrated the worse performance of these features for retrieval of leaf component AGB. RF outperformed SVR for both total and component AGB estimation, the validation difference from LOOCV and cross-validation is less than 5% for both total and component AGB estimated results.

摘要

森林地上生物量(AGB)及其生物量组成部分是评估森林生态系统健康状况、生产力和碳储量的关键指标。激光雷达(LiDAR)技术在获取森林垂直结构和植被空间分布特征方面具有很大优势。在本研究中,从机载LiDAR点云数据中提取的56个特征用于估计森林总生物量和各组成部分生物量。通过偏最小二乘回归算法计算的投影重要性值用于对LiDAR衍生特征进行排序和优化。留一法交叉验证(LOOCV)和交叉验证方法均用于验证估计结果。结果表明,四个累积高度百分位数( 、 、 和 )、两个高度百分位数( 和 )以及四个与高度相关的变量( 、 、 和 )在森林总生物量和各组成部分生物量反演的前10个敏感特征中排名更为频繁。随机森林(RF)算法表现最佳,通过LOOCV方法验证, = 0.75,均方根误差(RMSE)= 22.93 Mg/ha,相对RMSE(rRMSE)= 25.30%,平均绝对误差(MAE)= 19.26 Mg/ha。对于交叉验证结果, 为0.67,RMSE为24.56 Mg/ha,rRMSE为25.67%。使用LOOCV验证时,支持向量回归(SVR)对总生物量估计的性能为 = 0.66,RMSE = 26.75 Mg/ha,rRMSE = 28.62%,MAE = 22.00 Mg/ha;通过交叉验证时, = 0.56,RMSE = 30.88 Mg/ha,rRMSE = 31.41%。对于各组成部分生物量估计,RF和SVR算法的精度排序均为树干>树皮>树枝>树叶。结果证实了LiDAR衍生特征对森林总生物量和各组成部分生物量的敏感性。它们还表明这些特征在反演树叶组成部分生物量方面表现较差。在总生物量和各组成部分生物量估计方面,RF均优于SVR,总生物量和各组成部分生物量估计结果的LOOCV和交叉验证的验证差异均小于5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/ddc1e83023d7/fpls-14-1258521-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/672cee8e472d/fpls-14-1258521-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/d998eca0169b/fpls-14-1258521-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/027ad850a334/fpls-14-1258521-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/cbd78f764a84/fpls-14-1258521-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/9325b61762c9/fpls-14-1258521-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/abeba2bab0dd/fpls-14-1258521-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/dc7cc0d09d1d/fpls-14-1258521-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/dd68bfe9d6d1/fpls-14-1258521-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/8dd9dad1e0b1/fpls-14-1258521-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/8373310d14b7/fpls-14-1258521-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/9d54a7c73829/fpls-14-1258521-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/34d5d36fc694/fpls-14-1258521-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/ddc1e83023d7/fpls-14-1258521-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/672cee8e472d/fpls-14-1258521-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/d998eca0169b/fpls-14-1258521-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/027ad850a334/fpls-14-1258521-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/cbd78f764a84/fpls-14-1258521-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/9325b61762c9/fpls-14-1258521-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/abeba2bab0dd/fpls-14-1258521-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/dc7cc0d09d1d/fpls-14-1258521-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/dd68bfe9d6d1/fpls-14-1258521-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/8dd9dad1e0b1/fpls-14-1258521-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/8373310d14b7/fpls-14-1258521-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/9d54a7c73829/fpls-14-1258521-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/34d5d36fc694/fpls-14-1258521-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c74b/10639141/ddc1e83023d7/fpls-14-1258521-g013.jpg

相似文献

[1]
Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms.

Front Plant Sci. 2023-10-26

[2]
Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China.

Carbon Balance Manag. 2022-9-1

[3]
Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.

Carbon Balance Manag. 2017-12

[4]
Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong.

Sci Rep. 2021-1-18

[5]
Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico.

Carbon Balance Manag. 2018-2-21

[6]
Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.

Plant Methods. 2019-2-20

[7]
Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture.

Sci Total Environ. 2021-9-1

[8]
Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan.

Environ Monit Assess. 2020-8-17

[9]
Forest degradation and biomass loss along the Chocó region of Colombia.

Carbon Balance Manag. 2019-3-23

[10]
Estimation of coniferous forest aboveground biomass with aggregated airborne small-footprint LiDAR full-waveforms.

Opt Express. 2017-8-7

本文引用的文献

[1]
Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico.

Carbon Balance Manag. 2018-2-21

[2]
A universal airborne LiDAR approach for tropical forest carbon mapping.

Oecologia. 2011-10-28

[3]
Carbon pools and flux of global forest ecosystems.

Science. 1994-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索