Suppr超能文献

使用放疗患者的配对 MRI 验证 SynthSeg 在 CT 上的分割性能。

Validation of SynthSeg segmentation performance on CT using paired MRI from radiotherapy patients.

机构信息

Department of Radiation Oncology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; Department of Radiation Oncology, UMC Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.

Department of Radiation Oncology, UMC Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands; Computational Imaging Group for MR Diagnostics & Therapy, UMC Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.

出版信息

Neuroimage. 2024 Dec 1;303:120922. doi: 10.1016/j.neuroimage.2024.120922. Epub 2024 Nov 16.

Abstract

INTRODUCTION

Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this extent, SynthSeg is a robust deep learning model designed for automatic brain segmentation across various contrasts and resolutions. This study validates the SynthSeg robust brain segmentation model on computed tomography (CT), using a multi-center dataset.

METHODS

An open access dataset of 260 paired CT and magnetic resonance imaging (MRI) from radiotherapy patients treated in 5 centers was collected. Brain segmentations from CT and MRI were obtained with SynthSeg model, a component of the Freesurfer imaging suite. These segmentations were compared and evaluated using Dice scores and Hausdorff 95 distance (HD95), treating MRI-based segmentations as the ground truth. Brain regions that failed to meet performance criteria were excluded based on automated quality control (QC) scores.

RESULTS

Dice scores indicate a median overlap of 0.76 (IQR: 0.65-0.83). The mean volume difference is 7.79% (CI: 6.41%-9.18%), with CT segmentations typically smaller than MRI-based. The median HD95 is 2.95 mm (IQR: 1.73-5.39). QC score based thresholding improves median dice by 0.1 and median HD95 by 0.05 mm. Morphological differences related to sex and age, as detected by MRI, were also replicated with CT, with an approximate 17% difference between the CT and MRI results for sex and 10% difference between the results for age.

CONCLUSION

SynthSeg can be utilized for CT-based automatic brain segmentation, but only in applications where precision is not essential. CT performance is lower than MRI based on the integrated QC scores, but low-quality segmentations can be excluded with QC-based thresholding. Additionally, performing CT-based neuroanatomical studies is encouraged, as the results show correlations in sex- and age-based analyses similar to those found with MRI.

摘要

简介

医学图像的手动分割非常耗费人力,对于对比度或分辨率较差的图像尤其具有挑战性。疾病的存在进一步加剧了这种情况,因此需要一种自动化的解决方案。在这方面,SynthSeg 是一个强大的深度学习模型,旨在针对各种对比度和分辨率进行自动脑分割。本研究使用来自 5 个中心的放射治疗患者的 260 对 CT 和磁共振成像 (MRI) 的开放访问数据集验证了 SynthSeg 强大的脑分割模型。

方法

收集了来自 5 个中心的接受放射治疗的患者的 260 对 CT 和磁共振成像 (MRI) 的开放访问数据集。使用 SynthSeg 模型(Freesurfer 成像套件的一部分)从 CT 和 MRI 中获取脑分割。使用 Dice 分数和 Hausdorff 95 距离 (HD95) 对这些分割进行比较和评估,将基于 MRI 的分割作为地面真实。根据自动质量控制 (QC) 分数,排除未达到性能标准的脑区。

结果

Dice 分数表明中位数重叠度为 0.76(IQR:0.65-0.83)。平均体积差异为 7.79%(CI:6.41%-9.18%),CT 分割通常小于基于 MRI 的分割。中位数 HD95 为 2.95mm(IQR:1.73-5.39)。基于 QC 评分的阈值可使中位数 Dice 提高 0.1,中位数 HD95 提高 0.05mm。通过 MRI 检测到的与性别和年龄相关的形态差异也可以通过 CT 复制,CT 与 MRI 结果之间的性别差异约为 17%,年龄差异约为 10%。

结论

SynthSeg 可用于基于 CT 的自动脑分割,但仅在精度不是关键的应用中。基于综合 QC 评分,CT 的性能低于 MRI,但可以通过基于 QC 的阈值排除低质量的分割。此外,鼓励进行基于 CT 的神经解剖学研究,因为结果表明基于性别和年龄的分析存在相关性,与 MRI 中的相关性相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验