Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Med Phys. 2024 Oct;51(10):7295-7307. doi: 10.1002/mp.17260. Epub 2024 Jun 19.
Head and neck (HN) gross tumor volume (GTV) auto-segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi-modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed.
To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data.
Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the "Blank Channel" method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual-channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I.
Our proposed model(Model 1) achieved promising results for GTV auto-segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1's effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge.
We successfully refined a multi-modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.
由于头颈部(HN)肿瘤的形态复杂和目标对比度低,因此进行大体肿瘤体积(GTV)的自动分割具有挑战性。包括计算机断层扫描(CT)和正电子发射断层扫描(PET)在内的多模态图像在常规临床中用于帮助放射肿瘤学家进行准确的 GTV 勾画。然而,并非总是能够保证获得 PET 图像。
开发一种使用 PET/CT 图像进行头颈部癌症 GTV 自动勾画的深度学习分割框架,同时解决缺少 PET 数据的挑战。
本研究包括两个数据集:数据集 I:来自不同机构的 524 名(训练)和 359 名(测试)口咽癌患者,他们的 PET/CT 对由 HECKTOR 挑战赛提供;数据集 II:来自当地机构的 90 名 HN 患者(测试),他们有计划的 CT、PET/CT 对。为了处理潜在缺失的 PET 图像,实施了一种名为“空白通道”方法的模型训练策略。为了模拟缺乏 PET 图像,生成了一个与 CT 图像尺寸相同的空白数组,以满足深度学习模型的双通道输入要求。在模型训练过程中,模型会随机呈现真实的 PET/CT 对或空白/CT 对。这使得模型能够根据可用的模态学习 CT 图像和相应的 GTV 勾画之间的关系。因此,我们的模型在预测过程中具有处理灵活输入的能力,适用于缺少 PET 图像的情况。为了评估我们提出的模型的性能,我们使用数据集 I 中的训练患者进行训练,并使用数据集 II 进行测试。我们将我们的模型(模型 1)与另外两个专门针对特定模态分割的模型进行比较:仅使用 CT 图像训练的模型 2 和使用真实的 PET/CT 对训练的模型 3。使用定量指标,包括 Dice 相似系数(DSC)、平均表面距离(MSD)和 95% Hausdorff 距离(HD95)评估模型的性能。此外,我们还使用数据集 I 中的 359 个测试案例评估了我们的模型 1 和模型 3。
我们提出的模型(模型 1)在使用 PET/CT 图像进行 GTV 自动勾画方面取得了有前景的结果,具有处理缺失 PET 图像的灵活性。具体来说,当仅在数据集 II 中使用 CT 图像进行评估时,模型 1 的 DSC 为 0.56±0.16,MSD 为 3.4±2.1mm,HD95 为 13.9±7.6mm。当包括 PET 图像时,我们模型的性能得到了提高,达到了 DSC 为 0.62±0.14,MSD 为 2.8±1.7mm,HD95 为 10.5±6.5mm。这些结果与模型 2 和模型 3 的结果相当,表明模型 1 在利用灵活的输入模态方面具有有效性。使用数据集 I 的测试数据集进行的进一步分析表明,模型 1 的平均 DSC 为 0.77,超过了 HECKTOR 挑战赛中所有参与者的总体平均 DSC 0.72。
我们成功地改进了一种用于头颈部癌症 GTV 准确勾画的多模态分割工具。我们的方法通过允许灵活的数据输入解决了缺少 PET 图像的问题,为临床环境中可能受限的 PET 成像提供了一种实用的解决方案。