Suppr超能文献

一种用于提高机器人网络性能的有效机器人选择和充电调度方法。

An effective robot selection and recharge scheduling approach for improving robotic networks performance.

作者信息

ElSayyad Shimaa E, Saleh Ahmed I, Ali Hesham A, Saraya M S, Rabie Asmaa H, Abdelsalam Mohamed M

机构信息

Computers and Control Systems Engineering Department Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.

Misr Higher Institute for Engineering and Technology, Mansoura, Egypt.

出版信息

Sci Rep. 2024 Nov 18;14(1):28439. doi: 10.1038/s41598-024-78747-y.

Abstract

With the ability of servers to remotely control and manage a mobile robot, mobile robots are becoming more widespread as a form of remote communication and human-robot interaction. Controlling these robots, however, can be challenging because of their power consumption, delays, or the challenge of selecting the right robot for a certain task. This paper introduces a novel methodology for enhancing the efficacy of a mobile robotic network. The key two contributions of our suggested methodology are: I: A recommended strategy that eliminates the unwieldy robots before selecting the ideal robot to satisfy the task. II: A suggested procedure that uses a fuzzy algorithm to schedule the robots that need to be recharged. Since multiple robots may need to be recharged at once, this process aims to manage and control the recharging of robots in order to avoid conflicts or crowding. The suggested approach aims to preserve the charging capacity, physical resources (e.g. Hardware components), and battery life of the robots by loading the application onto a remote server node instead of individual robots. Furthermore, our solution makes use of fog servers to speed up data transfers between smart devices and the cloud, it is also used to move processing from remote cloud servers closer to the robots, improving on-site access to location-based services and real-time interaction. Simulation results showed that, our method achieved a 2.4% improvement in average accuracy and a 2.2% enhancement in average power usage over the most recent methods in the same comparable settings.

摘要

随着服务器具备远程控制和管理移动机器人的能力,移动机器人作为一种远程通信和人机交互形式正变得越来越普遍。然而,由于其功耗、延迟或为特定任务选择合适机器人的挑战,控制这些机器人可能具有挑战性。本文介绍了一种提高移动机器人网络效能的新方法。我们建议方法的两个关键贡献是:一:一种推荐策略,在选择理想机器人以满足任务之前消除笨拙的机器人。二:一种建议程序,使用模糊算法对需要充电的机器人进行调度。由于多个机器人可能同时需要充电,此过程旨在管理和控制机器人的充电,以避免冲突或拥挤。建议的方法旨在通过将应用程序加载到远程服务器节点而不是单个机器人上来保留机器人的充电能力、物理资源(如硬件组件)和电池寿命。此外,我们的解决方案利用雾服务器加快智能设备与云之间的数据传输,它还用于将处理从远程云服务器转移到更靠近机器人的位置,改善对基于位置服务的现场访问和实时交互。仿真结果表明,在相同可比设置下,我们的方法与最新方法相比,平均准确率提高了2.4%,平均功耗提高了2.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d3/11574187/b717868d057c/41598_2024_78747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验