Suppr超能文献

利用透光光谱法预测 S-卵白蛋白含量并确定鸡蛋的新鲜度。

Predicting the S-ovalbumin content and determining the freshness of chicken eggs via transmittance spectroscopy.

机构信息

Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

出版信息

Sci Rep. 2024 Nov 18;14(1):28405. doi: 10.1038/s41598-024-79975-y.

Abstract

The quality and freshness of eggs deteriorate during storage, impacting their role as a crucial dietary and industrial component. This study utilizes transmittance spectroscopy (200-1000 nm) to predict the S-ovalbumin content and to identify optimal wavelengths for assessing egg freshness levels. Three hundred fresh eggs were evaluated over 21 days of storage at ambient (25 ± 2 °C, 45 ± 5% R.H.) and refrigerated (5 ± 0.5 °C, 75 ± 5% R.H.) conditions by measuring quality indicators (Haugh unit, air cell height, yolk index, S-ovalbumin, and albumin/yolk pH). The samples were divided into several clusters using the fuzzy C-means algorithm based on these parameters. The changes in the S-ovalbumin concentration increased significantly (p < 0.01) across the storage conditions. Employing the first three principal components of preprocessed transmittance spectra as inputs to artificial neural networks enabled the discrimination of fresh from old eggs with 92% accuracy and the prediction of S-ovalbumin content with R = 0.93 and RMSE = 0.09. The light transmittance at wavelengths of 228 and 280 nm, as determined via the RELIEF algorithm, was used to classify the eggs into fresh/old (74.43% accuracy) and fresh/semi-fresh/old (72.85% accuracy) groups, demonstrating the efficacy of spectroscopy for non-destructive egg quality evaluation.

摘要

鸡蛋在储存过程中的质量和新鲜度会下降,从而影响其作为重要饮食和工业成分的作用。本研究利用透射光谱(200-1000nm)预测 S-卵白蛋白含量,并确定评估鸡蛋新鲜度水平的最佳波长。在环境(25±2°C,45±5%相对湿度)和冷藏(5±0.5°C,75±5%相对湿度)条件下,对 300 个新鲜鸡蛋进行了 21 天的储存评估,通过测量质量指标(哈夫单位、气室高度、蛋黄指数、S-卵白蛋白和白蛋白/蛋黄 pH 值)。使用模糊 C 均值算法根据这些参数将样本分为几个聚类。S-卵白蛋白浓度的变化在整个储存条件下显著增加(p<0.01)。采用预处理透射光谱的前三个主成分作为人工神经网络的输入,能够以 92%的准确率区分新鲜鸡蛋和陈旧鸡蛋,并以 R=0.93 和 RMSE=0.09 的精度预测 S-卵白蛋白含量。通过 RELIEF 算法确定的 228nm 和 280nm 处的光透射率用于将鸡蛋分为新鲜/陈旧(准确率为 74.43%)和新鲜/半新鲜/陈旧(准确率为 72.85%)组,表明光谱法在无损鸡蛋质量评估方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fc9/11574055/aee7d3c12d91/41598_2024_79975_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验