Department of Mathematics, Shanghai University, Shanghai, 200444, China.
Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
NPJ Syst Biol Appl. 2024 Nov 18;10(1):135. doi: 10.1038/s41540-024-00470-1.
Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow. Here, we develop the cumulative linearized approximation (CLA) algorithm to address this issue. Based on perturbation analysis and network decomposition, we theoretically demonstrate how perturbations affect the equilibrium variations through the integration of all regulatory paths and how stability of the equilibria is determined by distinct feedback loops. Two illustrative examples, i.e., a three-variable bistable system and a more intricate epithelial-mesenchymal transition (EMT) network, are chosen to validate the feasibility of this approach. These results establish a solid foundation for understanding information flow across cellular networks, highlighting the critical roles of local topologies in determining global network dynamics and the emergence of bifurcations within these networks. This work introduces a novel framework for investigating the general relationship between local topologies and global dynamics of cellular networks under perturbations.
细胞网络通过整合局部结构(如调控路径和反馈回路)中嵌入的复杂信息来实现其功能。然而,局部拓扑结构如何决定全局网络动态并引发分岔的精确机制仍未被识别。揭示整合的关键步骤是确定控制原则,这些原则是信息流机制的基础。在这里,我们开发了累积线性近似(CLA)算法来解决这个问题。基于微扰分析和网络分解,我们从理论上证明了微扰如何通过整合所有调控路径影响平衡点的变化,以及平衡点的稳定性如何由不同的反馈回路决定。选择了两个说明性的例子,即三变量双稳态系统和更复杂的上皮-间充质转化(EMT)网络,来验证这种方法的可行性。这些结果为理解细胞网络中的信息流奠定了坚实的基础,突出了局部拓扑结构在决定全局网络动态和这些网络中分叉出现中的关键作用。这项工作为研究扰动下细胞网络的局部拓扑和全局动力学之间的一般关系引入了一个新的框架。