Li Jiaxin, Zhang Chaoqi, Bao Tong, Xi Yamin, Yuan Ling, Zou Yingying, Bi Yin, Liu Chao, Yu Chengzhong
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China.
Adv Mater. 2025 Jan;37(4):e2416210. doi: 10.1002/adma.202416210. Epub 2024 Nov 18.
Photocatalytic nitrogen reduction reaction (PNRR) holds immense promise for sustainable ammonia (NH) synthesis. However, few photocatalysts can utilize NIR light that carries over 50% of the solar energy for NH production with high performance. Herein, a dual NIR-responsive S-scheme ZnCoS/FeS heterojunction photocatalyst is designed with asymmetric adsorption sites and excellent PNRR performance. The heterojunction possesses a hollow-on-hollow superstructure: FeS nanocrystal-modified ZnCoS nanocages as building blocks assemble into spindle-shaped particles with a spindle-like cavity. Both FeS and ZnCoS are NIR active, allowing efficient utilization of full-spectrum light. Moreover, an S-scheme heterojunction is constructed that promotes charge separation. In addition, the Fe/Co dual-metal sites at the interface enable an asymmetric side-on adsorption mode of N, favoring the polarization and activation of N molecules. In combination with the promoted mass transfer and active site exposure of hollow superstructure, a superior PNRR performance is achieved, with a high NH evolution rate of 2523.4 µmol g h, an apparent quantum yield of 9.4% at 400 nm and 8% at 1000 nm, and a solar-to-chemical conversion efficiency of 0.32%. The work paves the way for the rational design of advanced heterojunction catalysts for PNRR.
光催化氮还原反应(PNRR)在可持续合成氨(NH₃)方面具有巨大潜力。然而,很少有光催化剂能够利用占太阳能超过50%的近红外光高效合成氨。在此,设计了一种具有不对称吸附位点和优异PNRR性能的双近红外响应型S型ZnCoS/FeS异质结光催化剂。该异质结具有中空-中空超结构:以FeS纳米晶体修饰的ZnCoS纳米笼为结构单元组装成具有纺锤状空腔的纺锤形颗粒。FeS和ZnCoS均具有近红外活性,能够有效利用全光谱光。此外,构建了一种S型异质结以促进电荷分离。此外,界面处的Fe/Co双金属位点使N₂能够以不对称侧基吸附模式吸附,有利于N₂分子的极化和活化。结合中空超结构促进的传质和活性位点暴露,实现了优异的PNRR性能,氨析出速率高达2523.4 μmol g⁻¹ h⁻¹,在400 nm处的表观量子产率为9.4%,在1000 nm处为8%,太阳能到化学能的转换效率为0.32%。这项工作为合理设计用于PNRR的先进异质结催化剂铺平了道路。