Yuan Ling, Tang Cheng, Du Peiyang, Li Jiaxin, Zhang Chaoqi, Xi Yamin, Bi Yin, Bao Tong, Du Aijun, Liu Chao, Yu Chengzhong
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia.
Angew Chem Int Ed Engl. 2024 Dec 16;63(51):e202412340. doi: 10.1002/anie.202412340. Epub 2024 Oct 22.
Photocatalytic N reduction reaction (PNRR) offers a promising strategy for sustainable production of ammonia (NH). However, the reported photocatalysts suffer from low efficiency with great room to improve regarding the charge carrier utilization and active site engineering. Herein, a porous and chemically bonded heterojunction photocatalyst is developed for efficient PNRR to NH production via hybridization of two semiconducting metal-organic frameworks (MOFs), MIL-125-NH (MIL=Material Institute Lavoisier) and Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytripehenylene). Experimental and theoretical results demonstrate the formation of Ti-O-Co chemical bonds at the interface, which not only serve as atomic pathway for S-scheme charge transfer, but also provide electron-deficient Co centers for improving N chemisorption/activation capability and restricting competitive hydrogen evolution. Moreover, the nanoporous structure allows the transportation of reactants to the interfacial active sites at heterojunction, enabling the efficient utilization of charge carriers. Consequently, the rationally designed MOF-based heterojunction exhibits remarkable PNRR performance with an NH production rate of 2.1 mmol g h, an apparent quantum yield (AQY) value of 16.2 % at 365 nm and a solar-to-chemical conversion (SCC) efficiency of 0.28 %, superior to most reported PNRR photocatalysts. Our work provides new insights into the design principles of high-performance photocatalysts.
光催化氮还原反应(PNRR)为可持续生产氨(NH₃)提供了一种很有前景的策略。然而,已报道的光催化剂效率较低,在电荷载流子利用和活性位点工程方面仍有很大的改进空间。在此,通过两种半导体金属有机框架(MOF),即MIL-125-NH₂(MIL = 拉瓦锡材料研究所)和Co-HHTP(HHTP = 2,3,6,7,10,11-六羟基三亚苯基)的杂化,开发了一种多孔且化学键合的异质结光催化剂,用于高效光催化氮还原反应生成氨。实验和理论结果表明,在界面处形成了Ti-O-Co化学键,其不仅作为S型电荷转移的原子通道,还提供缺电子的Co中心以提高氮的化学吸附/活化能力并抑制竞争性析氢。此外,纳米多孔结构使反应物能够传输到异质结处的界面活性位点,从而实现电荷载流子的高效利用。因此,合理设计的基于MOF的异质结表现出卓越的光催化氮还原反应性能,氨产率为2.1 mmol g⁻¹ h⁻¹,在365 nm处的表观量子产率(AQY)值为16.2 %,太阳能到化学能的转换(SCC)效率为0.28 %,优于大多数已报道的光催化氮还原反应光催化剂。我们的工作为高性能光催化剂的设计原理提供了新的见解。