Suppr超能文献

从头算水的动态多样性与不变性

The Dynamic Diversity and Invariance of Ab Initio Water.

作者信息

Tian Wei, Wang Chenyu, Zhou Ke

机构信息

College of Energy, SIEMIS, Soochow University, Suzhou 215006, China.

出版信息

J Chem Theory Comput. 2024 Dec 10;20(23):10667-10675. doi: 10.1021/acs.jctc.4c01191. Epub 2024 Nov 19.

Abstract

Comprehending water dynamics is crucial in various fields, such as water desalination, ion separation, electrocatalysis, and biochemical processes. While ab initio molecular dynamics (AIMD) accurately portray water's structure, computing its dynamic properties over nanosecond time scales proves cost-prohibitive. This study employs machine learning potentials (MLPs) to accurately determine the dynamic properties of liquid water with ab initio accuracy. Our findings reveal diversity in the calculated diffusion coefficient () and viscosity of water (η) across different methodologies. Specifically, while the GGA, meta-GGA, and hybrid functional methods struggle to predict dynamic properties under ambient conditions, methods on the higher level of Jacob's ladder of DFT approximation perform significantly better. Intriguingly, we discovered that both and η adhere to the established Stokes-Einstein (SE) relation for all of the ab initio water. The diversity observed across different methods can be attributed to distinct structural entropy, affirming the applicability of excess entropy scaling relations across all functionals. The correlation between and η provides valuable insights for identifying the ideal temperature to accurately replicate the dynamic properties of liquid water. Furthermore, our findings can validate the rationale behind employing artificially high temperatures in the simulation of water via AIMD. These outcomes not only pave the path to designing better functionals for water but also underscore the significance of water's many-body characteristics.

摘要

理解水动力学在多个领域至关重要,如海水淡化、离子分离、电催化和生化过程。虽然从头算分子动力学(AIMD)能准确描绘水的结构,但在纳秒时间尺度上计算其动力学性质成本过高。本研究采用机器学习势(MLP)以从头算精度准确确定液态水的动力学性质。我们的研究结果揭示了不同方法计算的水的扩散系数( )和粘度(η)存在差异。具体而言,虽然广义梯度近似(GGA)、meta-GGA和杂化泛函方法在预测环境条件下的动力学性质时存在困难,但处于密度泛函理论(DFT)近似的雅各布阶梯较高水平的方法表现明显更好。有趣的是,我们发现对于所有从头算水, 和η都符合已确立的斯托克斯 - 爱因斯坦(SE)关系。不同方法间观察到的差异可归因于不同的结构熵,这证实了过剩熵标度关系在所有泛函中的适用性。 和η之间的相关性为确定准确复制液态水动力学性质的理想温度提供了有价值的见解。此外,我们的研究结果可以验证在通过AIMD模拟水时采用人工高温背后的原理。这些结果不仅为设计更好的水的泛函铺平了道路,也强调了水的多体特性的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验