Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2121641119. doi: 10.1073/pnas.2121641119. Epub 2022 May 19.
SignificanceFirst-principles calculations, which explicitly account for the electronic structure of matter, can shed light on the molecular structure and dynamics of water in its supercooled state. In this work, we use density functional theory, which relies on a functional to describe electronic exchange and correlations, to evaluate which functional best describes the temperature evolution of bulk water transport coefficients. We also assess the validity of the Stokes-Einstein relation for all the functionals in the temperature range studied, and explore the link between structure and dynamics. Based on these results, we show how transport coefficients can be computed from structural descriptors, which require shorter simulation times to converge, and we point toward strategies to develop better functionals.
意义
第一性原理计算,明确考虑物质的电子结构,可以揭示过冷水状态下水的分子结构和动力学。在这项工作中,我们使用密度泛函理论,该理论依赖于一个泛函来描述电子交换和相关,以评估哪个泛函最能描述体相水输运系数随温度的演化。我们还评估了斯托克斯-爱因斯坦关系在研究温度范围内所有泛函的有效性,并探讨了结构和动力学之间的联系。基于这些结果,我们展示了如何从结构描述符计算输运系数,结构描述符需要更短的模拟时间来收敛,并且我们指出了开发更好泛函的策略。