Xu Kun, Li Ke, He Ye, Mao Yulan, Li Xuan, Zhang Liangshuai, Tan Meijun, Yang Yulu, Luo Zhong, Liu Peng, Cai Kaiyong
Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China.
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China.
Bioact Mater. 2024 Nov 5;44:488-500. doi: 10.1016/j.bioactmat.2024.10.024. eCollection 2025 Feb.
The high glutathione (GSH) environment poses a significant challenge for inducing ferroptosis in tumor cells, necessitating the development of nanoplatforms that can deplete intracellular GSH. In this study, we developed an engineered nanoplatform (MIL-100@Era/L-Arg-HA) that enhances ferroptosis through gas therapy. First, we confirmed that the Fe element in the nanoplatform undergoes valence changes under the influence of high GSH and HO in tumor cells. Meanwhile, L-Arg generates NO gas in the presence of intracellular HO, which reacts with GSH. Additionally, Erastin depletes GSH by inhibiting the cystine/glutamate antiporter system, reducing cystine uptake and impairing GPX4, while also increasing intracellular HO levels by activating NOX4 protein expression. Through these combined GSH-depletion mechanisms, we demonstrated that MIL-100@Era/L-Arg-HA effectively depletes GSH levels, disrupts GPX4 function, and increases intracellular lipid ROS levels . Furthermore, this nanoplatform significantly inhibited tumor cell growth and extended the survival time of tumor-bearing mice . This engineered nanoplatform, which enhances ferroptosis through gas therapy, shows significant promise for ferroptosis-based cancer therapy and offers potential strategies for clinical tumor treatment.
高谷胱甘肽(GSH)环境对诱导肿瘤细胞铁死亡构成重大挑战,因此需要开发能够消耗细胞内GSH的纳米平台。在本研究中,我们开发了一种通过气体疗法增强铁死亡的工程纳米平台(MIL-100@Era/L-Arg-HA)。首先,我们证实纳米平台中的铁元素在肿瘤细胞中高GSH和HO的影响下发生价态变化。同时,L-Arg在细胞内HO存在的情况下产生NO气体,其与GSH发生反应。此外,埃拉司亭通过抑制胱氨酸/谷氨酸反向转运体系统消耗GSH,减少胱氨酸摄取并损害谷胱甘肽过氧化物酶4(GPX4),同时还通过激活NOX4蛋白表达增加细胞内HO水平。通过这些联合的GSH消耗机制,我们证明MIL-100@Era/L-Arg-HA有效地降低了GSH水平,破坏了GPX4功能,并增加了细胞内脂质活性氧水平。此外,这种纳米平台显著抑制肿瘤细胞生长并延长荷瘤小鼠的生存时间。这种通过气体疗法增强铁死亡的工程纳米平台在基于铁死亡的癌症治疗方面显示出巨大潜力,并为临床肿瘤治疗提供了潜在策略。