Suppr超能文献

基于 MIMIC-IV 数据库的脓毒症相关性肾损伤接受肾脏替代治疗患者院内死亡率预测模型的开发和验证:回顾性队列研究。

Development and validation of a model for predicting in-hospital mortality in patients with sepsis-associated kidney injury receiving renal replacement therapy: a retrospective cohort study based on the MIMIC-IV database.

机构信息

Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China.

Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

Front Cell Infect Microbiol. 2024 Nov 4;14:1488505. doi: 10.3389/fcimb.2024.1488505. eCollection 2024.

Abstract

BACKGROUND

SAKI is a common and serious complication of sepsis, contributing significantly to high morbidity and mortality, especially in patients requiring RRT. Early identification of high-risk patients enables timely interventions and improvement in clinical outcomes. The objective of this study was to develop and validate a predictive model for in-hospital mortality in patients with SAKI receiving RRT.

METHODS

Patients with SAKI receiving RRT from the MIMIC-IV database were retrospectively enrolled and randomly assigned to either the training cohort or the testing cohort in a 7:3 ratio. LASSO regression and Boruta algorithm were utilized for feature selection. Subsequently, three machine learning models-CART, SVM and LR-were constructed, and their predictive efficacy was assessed using a comprehensive set of performance indicators. Feature importance analysis was performed to determine the contribution of each feature to a model's predictions. Finally, DCA was employed to evaluate the clinical utility of the prediction models. Additionally, a clinical nomogram was developed to facilitate the interpretation and visualization of the LR model.

RESULTS

A total of 1663 adults were ultimately enrolled and randomly allocated into the training cohort (n = 1164) or the testing cohort (n = 499). Twenty-eight variables were evaluated for feature selection, with eight ultimately retained in the final model: age, MAP, RR, lactate, Cr, PT-INR, TBIL and CVP. The LR model demonstrated commendable performance, exhibiting robust discrimination in both the training cohort (AUROC: 0.73 (95% CI 0.70-0.76); AUPRC: 0.75 (95% CI 0.72-0.79); accuracy: 0.66 (95% CI 0.63-0.68)) and the testing cohort (AUROC: 0.72 (95% CI 0.68-0.76); AUPRC: 0.73 (95% CI 0.67-0.79); accuracy: 0.65 (95% CI 0.61-0.69)). Furthermore, there was good concordance between predicted and observed values in both the training cohort (χ2 = 4.41, p = 0.82) and the testing cohort (χ2 = 4.16, p = 0.84). The results of the DCA revealed that the LR model provided a greater net benefit compared to other prediction models.

CONCLUSIONS

The LR model exhibited superior performance in predicting in-hospital mortality in patients with SAKI receiving RRT, suggesting its potential utility in identifying high-risk patients and guiding clinical decision-making.

摘要

背景

序贯器官衰竭评估(SOFA)评分是脓毒症患者发生急性肾损伤(AKI)的常见且严重的并发症,显著增加了患者的发病率和死亡率,尤其是需要肾脏替代治疗(RRT)的患者。早期识别高危患者可以及时进行干预,改善临床结局。本研究旨在开发和验证一个接受 RRT 的 AKI 患者院内死亡率的预测模型。

方法

从 MIMIC-IV 数据库中回顾性纳入接受 RRT 的 AKI 患者,并按照 7:3 的比例随机分配到训练队列或测试队列。使用 LASSO 回归和 Boruta 算法进行特征选择。然后,构建了三个机器学习模型——决策树(CART)、支持向量机(SVM)和逻辑回归(LR),并使用一系列综合性能指标评估了它们的预测效果。通过特征重要性分析,确定了每个特征对模型预测的贡献。最后,使用决策曲线分析(DCA)评估预测模型的临床实用性。此外,还开发了一个临床列线图,以帮助解释和可视化 LR 模型。

结果

最终纳入了 1663 名成年人,并随机分配到训练队列(n = 1164)或测试队列(n = 499)。评估了 28 个变量进行特征选择,最终有 8 个变量保留在最终模型中:年龄、平均动脉压(MAP)、呼吸频率(RR)、乳酸、肌酐(Cr)、凝血酶原时间国际标准化比值(PT-INR)、总胆红素(TBIL)和中心静脉压(CVP)。LR 模型表现出色,在训练队列(AUROC:0.73(95%CI 0.70-0.76);AUPRC:0.75(95%CI 0.72-0.79);准确率:0.66(95%CI 0.63-0.68))和测试队列(AUROC:0.72(95%CI 0.68-0.76);AUPRC:0.73(95%CI 0.67-0.79);准确率:0.65(95%CI 0.61-0.69))中均具有良好的区分度。此外,在训练队列(χ2 = 4.41,p = 0.82)和测试队列(χ2 = 4.16,p = 0.84)中,预测值与实际值之间均具有良好的一致性。DCA 的结果表明,LR 模型与其他预测模型相比提供了更大的净收益。

结论

LR 模型在预测接受 RRT 的 AKI 患者的院内死亡率方面表现出优异的性能,提示其在识别高危患者和指导临床决策方面具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/11570588/14b48ac98c36/fcimb-14-1488505-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验