Omage Folorunsho Bright, Salim José Augusto, Mazoni Ivan, Yano Inácio Henrique, Borro Luiz, Gonzalez Jorge Enrique Hernández, de Moraes Fabio Rogerio, Giachetto Poliana Fernanda, Tasic Ljubica, Arni Raghuvir Krishnaswamy, Neshich Goran
Computational Biology Research Group, Embrapa Digital Agriculture, Campinas, São Paulo, Brazil.
Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Comput Struct Biotechnol J. 2024 Oct 23;23:3907-3919. doi: 10.1016/j.csbj.2024.10.036. eCollection 2024 Dec.
Allosteric regulation plays a crucial role in modulating protein functions and represents a promising strategy in drug development, offering enhanced specificity and reduced toxicity compared to traditional active site inhibition. Existing computational methods for predicting allosteric sites on proteins often rely on static protein surface pocket features, normal mode analysis or extensive molecular dynamics simulations encompassing both the protein function modulator and the protein itself. In this study, we introduce an innovative methodology that employs a per amino acid residue classifier to distinguish allosteric site-forming residues (AFRs) from non-allosteric, or free residues (FRs). Our model, STINGAllo, exhibits robust performance, achieving Distance Center Center (DCC) success rate when all AFRs were predicted within pockets identified by FPocket, overall DCC, F1 score and a Matthews correlation coefficient (MCC) of 78 %, 60 %, 64 % and 64 % respectively. Furthermore, we identified key descriptors that characterize the internal protein nanoenvironment of AFRs, setting them apart from FRs. These descriptors include the sponge effect, distance to the protein centre of geometry (cg), hydrophobic interactions, electrostatic potentials, eccentricity, and graph bottleneck features.
别构调节在调节蛋白质功能中起着至关重要的作用,并且在药物开发中是一种很有前景的策略,与传统的活性位点抑制相比,具有更高的特异性和更低的毒性。现有的预测蛋白质别构位点的计算方法通常依赖于静态的蛋白质表面口袋特征、正常模式分析或包含蛋白质功能调节剂和蛋白质本身的广泛分子动力学模拟。在本研究中,我们引入了一种创新方法,该方法使用每个氨基酸残基分类器来区分形成别构位点的残基(AFR)和非别构残基或自由残基(FR)。我们的模型STINGAllo表现出强大的性能,当所有AFR都在由FPocket识别的口袋内被预测到时,实现了距离中心中心(DCC)成功率,总体DCC、F1分数和马修斯相关系数(MCC)分别为78%、60%、64%和64%。此外,我们确定了表征AFR内部蛋白质纳米环境的关键描述符,将它们与FR区分开来。这些描述符包括海绵效应、到蛋白质几何中心(cg)的距离、疏水相互作用、静电势、偏心率和图瓶颈特征。