Suppr超能文献

整合残基直观机器学习与分子动力学方法揭示β2肾上腺素能受体的变构位点和机制

Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR.

作者信息

Chen Xin, Wang Kexin, Chen Jianfang, Wu Chao, Mao Jun, Song Yuanpeng, Liu Yijing, Shao Zhenhua, Pu Xuemei

机构信息

College of Chemistry, Sichuan University, Chengdu, China.

Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Nat Commun. 2024 Sep 16;15(1):8130. doi: 10.1038/s41467-024-52399-y.

Abstract

Allosteric drugs offer a new avenue for modern drug design. However, the identification of cryptic allosteric sites presents a formidable challenge. Following the allostery nature of residue-driven conformation transition, we propose a state-of-the-art computational pipeline by developing a residue-intuitive hybrid machine learning (RHML) model coupled with molecular dynamics (MD) simulation, through which we can efficiently identify the allosteric site and allosteric modulator as well as reveal their regulation mechanism. For the clinical target β2-adrenoceptor (β2AR), we discover an additional allosteric site located around residues D79, F282, N318 and S319 and one putative allosteric modulator ZINC5042. Using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and protein structure network (PSN), the allosteric potency and regulation mechanism are probed to further improve identification accuracy. Benefiting from sufficient computational evidence, the experimental assays then validate our predicted allosteric site, negative allosteric potency and regulation pathway, showcasing the effectiveness of the identification pipeline in practice. We expect that it will be applicable to other target proteins.

摘要

变构药物为现代药物设计提供了一条新途径。然而,隐秘变构位点的识别是一项艰巨的挑战。遵循残基驱动的构象转变的变构性质,我们通过开发一种结合分子动力学(MD)模拟的残基直观混合机器学习(RHML)模型,提出了一种先进的计算流程,通过该流程我们可以有效地识别变构位点和变构调节剂,并揭示它们的调控机制。对于临床靶点β2肾上腺素能受体(β2AR),我们发现了一个位于残基D79、F282、N318和S319周围的额外变构位点以及一种假定的变构调节剂ZINC5042。使用分子力学/广义玻恩表面积(MM/GBSA)和蛋白质结构网络(PSN),探究变构效力和调控机制以进一步提高识别准确性。受益于充分的计算证据,实验分析随后验证了我们预测的变构位点、负变构效力和调控途径,展示了识别流程在实践中的有效性。我们期望它将适用于其他靶蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6503/11405859/30a70c4732e2/41467_2024_52399_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验