McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
RNA Biol. 2024 Jan;21(1):132-148. doi: 10.1080/15476286.2024.2427903. Epub 2024 Nov 19.
Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.
碱基氧化的大量增加,最常见的表现为鸟嘌呤(G)碱基修饰 8-氧代-7,8-二氢鸟嘌呤(8-oxoG),与多种疾病病理有关。由于缺乏检测用 8-oxoG 特异性修饰的有效工具,阐明 RNA 氧化对细胞内稳态的影响受到限制。基于先前发表的研究 DNA 中 8-oxoG 的方法,我们开发了 ChLoRox-Seq,该方法通过将生物素共价功能化到 RNA 中的 8-oxoG 位点来起作用。重要的是,这种方法能够实现抗体免费富集含 8-oxoG 的 RNA 片段,用于基于下一代测序的全转录组修饰区域检测。我们证明了 ChLoRox-Seq 对 RNA 中功能性 8-oxoG 相对于未修饰碱基的高特异性,并将此特异性与常用的抗体方法进行了基准测试。ChLoRox-Seq 的主要优势包括:(1)提高 RNA 氧化区域(例如外显子水平)的分辨率;(2)降低实验成本。通过将 ChLoRox-Seq 应用于暴露于环境相关应激后的人肺上皮细胞(BEAS-2B)提取的 mRNA,我们观察到 8-oxoG 修饰倾向于聚集在富含 G 的区域,并且在具有较长 5'UTR 和 CDS 区域的 mRNA 转录本中。这些发现为理解偏向整个转录组中 RNA 氧化积累的复杂机制提供了新的见解。值得注意的是,我们的分析表明,大多数 mRNA 氧化事件可能是概率驱动的,并且具有更有利内在特性的 mRNAs 更容易以更高的速率发生氧化事件。ChLoRox-Seq 可以在未来的研究中轻松应用于识别任何感兴趣的细胞模型中升高的 RNA 氧化区域。