Loegler Victor, Friedrich Anne, Schacherer Joseph
Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67000, France.
Institut Universitaire de France (IUF), Paris, 75005, France.
G3 (Bethesda). 2024 Nov 19;14(12). doi: 10.1093/g3journal/jkae245.
With the rise of high-throughput sequencing technologies, a holistic view of genetic variation within populations-through population genomics studies-appears feasible, although it remains an ongoing effort. Genetic variation arises from a diverse range of evolutionary forces, with mutation and recombination being key drivers in shaping genomes. Studying genetic variation within a population represents a crucial first step in understanding the relationship between genotype and phenotype and the evolutionary history of species. In this context, the budding yeast Saccharomyces cerevisiae has been at the forefront of population genomic studies. In addition, it has a complex history that involves adaptation to a wide range of wild and human-related ecological niches. Although to date more than 3,000 diverse isolates have been sequenced, there is currently a lack of a resource bringing together sequencing data and associated metadata for all sequenced isolates. To perform a comprehensive analysis of the population structure of S. cerevisiae, we collected genome sequencing data from 3,034 natural isolates and processed the data uniformly. We determined ploidy levels, identified single nucleotide polymorphisms (SNPs), small insertion-deletions (InDels), copy number variations (CNVs), and aneuploidies across the population, creating a publicly accessible resource for the yeast research community. Interestingly, we showed that this population captures ∼93% of the species diversity. Using neighbor-joining and Bayesian methods, we redefined the populations, revealing clustering patterns primarily based on ecological origin. This work represents a valuable resource for the community and efforts have been made to make it evolvable and integrable to future yeast population studies.
随着高通量测序技术的兴起,通过群体基因组学研究对群体内的遗传变异形成整体认识似乎是可行的,尽管这仍是一项正在进行的工作。遗传变异源于多种进化力量,其中突变和重组是塑造基因组的关键驱动因素。研究群体内的遗传变异是理解基因型与表型之间关系以及物种进化历史的关键第一步。在这种背景下,出芽酵母酿酒酵母一直处于群体基因组研究的前沿。此外,它有着复杂的历史,涉及对广泛的野生和与人类相关的生态位的适应。尽管迄今为止已经对3000多种不同的分离株进行了测序,但目前缺乏一个汇集所有已测序分离株的测序数据和相关元数据的资源。为了对酿酒酵母的群体结构进行全面分析,我们收集了3034个自然分离株的基因组测序数据并进行了统一处理。我们确定了倍性水平,识别了全群体中的单核苷酸多态性(SNP)、小插入缺失(InDel)、拷贝数变异(CNV)和非整倍体,为酵母研究群体创建了一个可公开获取的资源。有趣的是,我们发现这个群体涵盖了约93%的物种多样性。使用邻接法和贝叶斯方法,我们重新定义了群体,揭示了主要基于生态起源的聚类模式。这项工作为群体提供了宝贵的资源,并且已经做出努力使其能够不断发展并与未来的酵母群体研究相结合。