Suppr超能文献

将 SIR 动态传染病模型与 2021-2022 年在纽约市奥密克戎疫情期间报告的每日 COVID-19 病例进行紧密拟合:一种新方法。

A tight fit of the SIR dynamic epidemic model to daily cases of COVID-19 reported during the 2021-2022 Omicron surge in New York City: A novel approach.

机构信息

Department of Economics, Massachusetts Institute of Technology, Cambridge, MA, USA.

Adult Medicine Department, Eisner Health, Los Angeles, CA, USA.

出版信息

Stat Methods Med Res. 2024 Oct;33(10):1877-1898. doi: 10.1177/09622802241277956.

Abstract

We describe a novel approach for recovering the underlying parameters of the SIR dynamic epidemic model from observed data on case incidence. We formulate a discrete-time approximation of the original continuous-time model and search for the parameter vector that minimizes the standard least squares criterion function. We show that the gradient vector and matrix of second-order derivatives of the criterion function with respect to the parameters adhere to their own systems of difference equations and thus can be exactly calculated iteratively. Applying our new approach, we estimated a four-parameter SIR model from daily reported cases of COVID-19 during the SARS-CoV-2 Omicron/BA.1 surge of December 2021-March 2022 in New York City. The estimated SIR model showed a tight fit to the observed data, but less so when we excluded residual cases attributable to the Delta variant during the initial upswing of the wave in December. Our analyses of both the real-world COVID-19 data and simulated case incidence data revealed an important problem of weak parameter identification. While our methods permitted for the separate estimation of the infection transmission parameter and the infection persistence parameter, only a linear combination of these two key parameters could be estimated with precision. The SIR model appears to be an adequate reduced-form description of the Omicron surge, but it is not necessarily the correct structural model. Prior information above and beyond case incidence data may be required to sharply identify the parameters and thus distinguish between alternative epidemic models.

摘要

我们描述了一种从观察到的病例发生率数据中恢复 SIR 动态传染病模型基本参数的新方法。我们对原始连续时间模型进行了离散时间逼近,并搜索使标准最小二乘准则函数最小化的参数向量。我们表明,准则函数相对于参数的梯度向量和二阶导数矩阵符合其自身的差分方程系统,因此可以迭代精确计算。应用我们的新方法,我们从 2021 年 12 月至 2022 年 3 月纽约市 SARS-CoV-2 奥密克戎/BA.1 浪期间每日报告的 COVID-19 病例中估计了一个四参数 SIR 模型。估计的 SIR 模型与观察数据拟合得非常紧密,但在排除 12 月波初始上升期间与德尔塔变异相关的剩余病例时,拟合效果就不太理想。我们对真实世界 COVID-19 数据和模拟病例发生率数据的分析揭示了一个重要的弱参数识别问题。虽然我们的方法允许分别估计感染传播参数和感染持续时间参数,但这两个关键参数只能以线性组合的形式进行精确估计。SIR 模型似乎是奥密克戎浪涌的一个充分简化形式描述,但它不一定是正确的结构模型。可能需要病例发生率数据之外的先验信息来准确识别参数,从而区分替代的传染病模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a579/11577707/00848fcf1eba/10.1177_09622802241277956-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验