Suppr超能文献

过氧化铜钴纳米颗粒:在生理相关pH值下用于增强类芬顿疗法的仿生级联反应。

Copper-cobalt peroxide nanoparticles: a biomimetic cascade reaction for enhanced Fenton-like therapy at physiologically relevant pH.

作者信息

Farrokhnia Maryam, Manoochehri Hamed, Shirkani Mina, Martínez-Máñez Ramón, Karimi Sadegh

机构信息

The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.

Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran.

出版信息

Nanoscale. 2024 Dec 19;17(1):345-360. doi: 10.1039/d4nr03135k.

Abstract

Traditional Fenton-like reactions, commonly employed in chemodynamic therapy (CDT) for cancer treatment, face limitations due to the mildly acidic tumor microenvironment (TME) and scarce HO availability. Aiming to overcome these hurdles, we report herein the preparation of copper-cobalt peroxide (CCp) nanoparticles, a novel catalyst that enables a pH-activated, self-supplying HO-mediated cascade reaction. In the slightly acidic TME (pH 6.5-7.0), CCp nanoparticles degrade, generating HO. This intrinsic HO production eliminates the need for external HO sources and enables activation in a significantly higher pH range. Simultaneously, released Cu and Co ions, primarily in lower oxidation states, synergistically drive a catalytic loop for sustained hydroxyl radical (˙OH) production. The non-ferrous bimetallic approach exhibits exquisite pH sensitivity and self-sufficiency, surpassing traditional Fenton reactions. Comparative studies highlight CCp's superior performance against copper-based bimetallic peroxides containing Fe and Ce, confirming the synergistic power of Cu-Co pairing. experiments demonstrate that the synthesized CCp-NPs exhibit greater toxicity toward breast cancer cells (4T1) than towards non-cancerous cells, showcasing their therapeutic potential. Furthermore, CCp-NPs outperform other nanoparticles in inhibiting cancer cell proliferation, colony formation, and migration. Density Functional Theory (DFT) calculations suggest that Co doping enhances CCp's ability to participate in Fenton reactions. Overall, this work is pioneering in relation to the design of a new class of smart nanoparticles for CDT. The combination of self-generated HO, high pH activation, and synergistic metal effects in CCp opens the door for next-generation cancer theranostic nanoparticles with unprecedented efficiency and precision, minimizing side effects.

摘要

传统的类芬顿反应常用于癌症治疗的化学动力学疗法(CDT),但由于肿瘤微环境(TME)呈轻度酸性且羟基自由基(HO)可用性稀缺而面临局限性。为了克服这些障碍,我们在此报告了过氧化铜钴(CCp)纳米颗粒的制备,这是一种新型催化剂,能够实现pH激活的、自供应HO介导的级联反应。在微酸性的TME(pH 6.5 - 7.0)中,CCp纳米颗粒降解,产生HO。这种内源性HO的产生消除了对外部HO源的需求,并能够在显著更高的pH范围内激活。同时,释放出的主要处于较低氧化态的铜离子和钴离子协同驱动一个催化循环,以持续产生羟基自由基(˙OH)。这种非铁双金属方法表现出出色的pH敏感性和自足性,优于传统的芬顿反应。对比研究突出了CCp相对于含Fe和Ce的铜基双金属过氧化物的优越性能,证实了Cu - Co配对的协同作用。实验表明,合成的CCp - NPs对乳腺癌细胞(4T1)的毒性比对非癌细胞更大,展示了它们的治疗潜力。此外,CCp - NPs在抑制癌细胞增殖、集落形成和迁移方面优于其他纳米颗粒。密度泛函理论(DFT)计算表明,钴掺杂增强了CCp参与芬顿反应的能力。总体而言,这项工作在设计用于CDT的新型智能纳米颗粒方面具有开创性。CCp中自生成HO、高pH激活和协同金属效应的结合,为具有前所未有的效率和精度、将副作用降至最低的下一代癌症诊疗纳米颗粒打开了大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验