Suppr超能文献

长期1型糖尿病与人类股骨皮质骨力学行为缺陷和基质成分改变有关。

Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone.

作者信息

Emerzian Shannon R, Chow Jarred, Behzad Ramina, Unal Mustafa, Brooks Daniel J, Wu I-Hsien, Gauthier John, Jangolla Surya Vishva Teja, Yu Marc Gregory, Shah Hetal S, King George L, Johannesdottir Fjola, Karim Lamya, Yu Elaine W, Bouxsein Mary L

机构信息

Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States.

Harvard Medical School, Boston, MA 02115, United States.

出版信息

J Bone Miner Res. 2024 Dec 31;40(1):87-99. doi: 10.1093/jbmr/zjae184.

Abstract

Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end-products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 yr; n = 20) and age- and sex-matched nondiabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification [total fluorescent AGEs, pentosidine, carboxymethyl lysine (CML)], and matrix composition via Raman spectroscopy. Cortical bone from older adults with T1D had diminished postyield toughness to fracture (-30%, p = .036), elevated levels of AGEs (pentosidine, +17%, p = .039), lower mineral crystallinity (-1.4%, p = .010), greater proline hydroxylation (+1.9%, p = .009), and reduced glycosaminoglycan (GAG) content (-1.3%, p < .03) compared to nondiabetics. In multiple regression models to predict cortical bone toughness, cortical tissue mineral density, CML, and Raman spectroscopic measures of enzymatic collagen crosslinks and GAG content remained highly significant predictors of toughness, while diabetic status was no longer significant (adjusted R2 > 0.60, p < .001). Thus, the impairment of cortical bone to absorb energy following long-duration T1D is well explained by AGE accumulation and modifications to the bone matrix. These results provide novel insight into the pathogenesis of skeletal fragility in individuals with T1D.

摘要

1型糖尿病(T1D)与髋部骨折风险增加相关,这种风险增加超出了骨矿物质密度降低所能解释的范围,这可能是由于晚期糖基化终产物(AGEs)积累导致的骨材料变化以及基质组成改变所致,不过来自T1D患者人类皮质骨的数据有限。本研究的目的是通过检查长期患T1D(≥50岁;n = 20)的老年人以及年龄和性别匹配的非糖尿病对照者(n = 14)的尸体股骨标本,来评估T1D患者皮质骨材料的行为。通过机械测试(四点弯曲、循环参考点压痕、冲击微压痕)、AGE定量[总荧光AGEs、戊糖苷、羧甲基赖氨酸(CML)]以及通过拉曼光谱分析基质组成来评估皮质骨。与非糖尿病患者相比,长期患T1D的老年人的皮质骨屈服后骨折韧性降低(-30%,p = 0.036),AGEs水平升高(戊糖苷,+17%,p = 0.039),矿物质结晶度降低(-1.4%,p = 0.010),脯氨酸羟化程度更高(+1.9%,p = 0.009),糖胺聚糖(GAG)含量降低(-1.3%,p < 0.03)。在预测皮质骨韧性的多元回归模型中,皮质组织矿物质密度、CML以及酶促胶原交联和GAG含量的拉曼光谱测量值仍然是韧性的高度显著预测指标,而糖尿病状态不再显著(调整后R2>0.60,p < 0.001)。因此,长期患T1D后皮质骨吸收能量的受损情况可以很好地用AGE积累和骨基质改变来解释。这些结果为T1D患者骨骼脆性的发病机制提供了新的见解。

相似文献

3
Effectiveness and safety of vitamin D in relation to bone health.
Evid Rep Technol Assess (Full Rep). 2007 Aug(158):1-235.
6
Microbiome-induced increases and decreases in bone matrix strength can be initiated after skeletal maturity.
J Bone Miner Res. 2024 Oct 29;39(11):1621-1632. doi: 10.1093/jbmr/zjae157.
8
The Changing Epidemiology of Type 1 Diabetes: A Global Perspective.
Diabetes Obes Metab. 2025 Jun 19. doi: 10.1111/dom.16501.
9
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
10
Nutritional interventions for survivors of childhood cancer.
Cochrane Database Syst Rev. 2016 Aug 22;2016(8):CD009678. doi: 10.1002/14651858.CD009678.pub2.

引用本文的文献

1
Bone microstructure and TBS in diabetes: what have we learned? A narrative review.
Osteoporos Int. 2025 May 12. doi: 10.1007/s00198-025-07495-0.

本文引用的文献

1
Enzymatic and Non-enzymatic Collagen Cross-Links and Fracture Occurrence in Type 1 Diabetes Patients.
Calcif Tissue Int. 2024 Sep;115(3):328-333. doi: 10.1007/s00223-024-01243-y. Epub 2024 Jun 14.
4
Assessment of glycosaminoglycan content in bone using Raman spectroscopy.
Bone. 2023 Jun;171:116751. doi: 10.1016/j.bone.2023.116751. Epub 2023 Mar 29.
5
Effect of ribose incubation on physical, chemical, and mechanical properties of human cortical bone.
J Mech Behav Biomed Mater. 2023 Apr;140:105731. doi: 10.1016/j.jmbbm.2023.105731. Epub 2023 Feb 19.
6
Accumulation of fluorescent advanced glycation end products and carboxymethyl-lysine in human cortical and trabecular bone.
Bone Rep. 2022 Nov 3;17:101634. doi: 10.1016/j.bonr.2022.101634. eCollection 2022 Dec.
7
Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation.
J Bone Miner Res. 2022 Nov;37(11):2259-2276. doi: 10.1002/jbmr.4706. Epub 2022 Oct 19.
8
Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility.
Bone. 2022 Oct;163:116485. doi: 10.1016/j.bone.2022.116485. Epub 2022 Jul 4.
9
Influence of Diabetes-Induced Glycation and Oxidative Stress on the Human Rotator Cuff.
Antioxidants (Basel). 2022 Apr 8;11(4):743. doi: 10.3390/antiox11040743.
10
Bone fragility in diabetes: novel concepts and clinical implications.
Lancet Diabetes Endocrinol. 2022 Mar;10(3):207-220. doi: 10.1016/S2213-8587(21)00347-8. Epub 2022 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验