Matar Suhail, Marantz Alec
The Basque Center on Cognition, Brain, and Language (BCBL), Donostia-San Sebastián, Gipuzkoa 20009, Spain
New York University, New York, New York 10003.
J Neurosci. 2025 Feb 12;45(7):e0781242024. doi: 10.1523/JNEUROSCI.0781-24.2024.
To comprehend speech, human brains identify meaningful units, like words, in the speech stream. But whereas the English '' has three words, the Arabic equivalent '' forms one word with three meaningful subword units, called morphemes: a verb stem (''), a subject suffix ('--'), and a direct object pronoun ('-'). It remains unclear whether and how speech comprehension involves morpheme processing, above and beyond other language units. Here, we propose and test hierarchically nested encoding models of speech comprehension: a naïve model with word-, syllable-, and sound-level information; a bottom-up model with additional morpheme boundary information; and predictive models that process morphemes before these boundaries. We recorded MEG data as 27 participants (16 female) listened to Arabic sentences like ' ' A temporal response function analysis revealed that in temporal and left inferior frontal regions, predictive models outperform the bottom-up model, which outperforms the naïve model. Moreover, verb stems were either length-ambiguous (e.g., '' is initially mistakable for the shorter stem '', meaning '') or length-unambiguous (e.g., '', meaning '', cannot be mistaken for a shorter stem) but shared a uniqueness point, beyond which stem identity is disambiguated. Evoked analyses revealed differences between conditions before the uniqueness point, suggesting that, rather than await disambiguation, the brain employs proactive predictive strategies, processing accumulated input as soon as any possible stem is identifiable, even if not uniquely. These findings highlight the role of morphemes in speech and the importance of including morpheme-level information in neural and computational models of speech comprehension.
为了理解言语,人类大脑会在言语流中识别有意义的单元,比如单词。但是,英文的“ ”有三个单词,而阿拉伯语中的对应表述“ ”却是一个由三个有意义的子词单元组成的单词,这些子词单元被称为语素:一个动词词干(“ ”)、一个主语后缀(“--”)和一个直接宾语代词(“-”)。言语理解是否以及如何涉及语素处理,超出其他语言单元,目前尚不清楚。在这里,我们提出并测试了言语理解的分层嵌套编码模型:一个包含单词、音节和声音层面信息的简单模型;一个具有额外语素边界信息的自下而上模型;以及在这些边界之前处理语素的预测模型。我们记录了27名参与者(16名女性)在听阿拉伯语句子(如“ ”)时的脑磁图数据。时间响应函数分析表明,在颞叶和左下额叶区域,预测模型的表现优于自下而上模型,而自下而上模型又优于简单模型。此外,动词词干要么在长度上有歧义(例如,“ ”最初可能被误认为是较短的词干“ ”,意思是“ ”),要么在长度上无歧义(例如,“ ”,意思是“ ”,不可能被误认为是较短的词干),但它们有一个唯一确定点,超过这个点词干的身份就会被明确。诱发分析揭示了在唯一确定点之前不同条件之间的差异,这表明大脑并非等待明确身份,而是采用主动预测策略,一旦识别出任何可能的词干,即使不是唯一确定的,也会立即处理积累的输入。这些发现突出了语素在言语中的作用,以及在言语理解的神经和计算模型中纳入语素层面信息的重要性。