Aboal-Castro Lucia, Radziunas-Salinas Yago, Pita-Vilar Maria, Carnero Bastian, Mikos Antonios G, Alvarez-Lorenzo Carmen, Flores-Arias Maria Teresa, Diaz-Gomez Luis
Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
Instituto de Materiales (iMATUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
Adv Healthc Mater. 2025 Jan;14(3):e2403992. doi: 10.1002/adhm.202403992. Epub 2024 Nov 19.
The dynamic interaction between cells and their substrate is a cornerstone of biomaterial-based tissue regeneration focused on unraveling the complex factors that govern this crucial relationship. A key challenge is translating physical cues from 2D to 3D due to limitations in current biofabrication techniques. In response, this study introduces an innovative approach that combines additive and subtractive manufacturing for precise surface patterning of 3D printed scaffolds. Using poly(𝜀-caprolactone) as the scaffold material, polymeric fibers are 3D printed and subsequently laser-engraved with femtosecond laser to precisely create controlled microtopographies, including microgrooves (10 and 80 µm in width) and micropits (25 µm in diameter). Testing shows that the process does not compromise the mechanical properties of the fibers, which is critical for structural applications in tissue engineering. Human mesenchymal stem cells are used to investigate the effects of these topographical features on cell behavior. The 10 µm wide microgrooves notably enhance cell attachment, with cells aligning in elongated forms along the grooves, while micropits and unpatterned surfaces promote polygonal cell shapes. This combined approach demonstrates that precisely engineered microtopographies on 3D printed scaffolds can better mimic the natural extracellular matrix, improving cellular responses and offering a promising strategy for advancing tissue regeneration.
细胞与其基质之间的动态相互作用是以揭示控制这种关键关系的复杂因素为重点的基于生物材料的组织再生的基石。由于当前生物制造技术的局限性,将物理线索从二维转换到三维是一项关键挑战。作为回应,本研究引入了一种创新方法,该方法结合了增材制造和减材制造,用于对3D打印支架进行精确的表面图案化。使用聚(ε-己内酯)作为支架材料,3D打印聚合物纤维,随后用飞秒激光进行激光雕刻,以精确创建可控的微观形貌,包括微槽(宽度为10和80微米)和微坑(直径为25微米)。测试表明,该过程不会损害纤维的机械性能,这对于组织工程中的结构应用至关重要。使用人间充质干细胞来研究这些形貌特征对细胞行为的影响。10微米宽的微槽显著增强了细胞附着,细胞沿着微槽以细长形式排列,而微坑和未图案化的表面则促进多边形细胞形状。这种组合方法表明,3D打印支架上精确设计的微观形貌可以更好地模拟天然细胞外基质,改善细胞反应,并为推进组织再生提供了一种有前景的策略。