Suppr超能文献

巴扬算法:通过模块度的精确和近似优化来检测网络中的社区。

Bayan algorithm: Detecting communities in networks through exact and approximate optimization of modularity.

作者信息

Aref Samin, Mostajabdaveh Mahdi, Chheda Hriday

机构信息

Department of Mechanical and Industrial Engineering, <a href="https://ror.org/03dbr7087">University of Toronto</a>, Toronto, Canada M5S 3G8.

Department of Mathematical and Industrial Engineering, <a href="https://ror.org/05f8d4e86">Polytechnique Montréal</a>, Montreal, Canada H3T 1J4.

出版信息

Phys Rev E. 2024 Oct;110(4-1):044315. doi: 10.1103/PhysRevE.110.044315.

Abstract

Community detection is a classic network problem with extensive applications in various fields. Its most common method is using modularity maximization heuristics which rarely return an optimal partition or anything similar. Partitions with globally optimal modularity are difficult to compute, and therefore have been underexplored. Using structurally diverse networks, we compare 30 community detection methods including our proposed algorithm that offers optimality and approximation guarantees: the Bayan algorithm. Unlike existing methods, Bayan globally maximizes modularity or approximates it within a factor. Our results show the distinctive accuracy and stability of maximum-modularity partitions in retrieving planted partitions at rates higher than most alternatives for a wide range of parameter settings in two standard benchmarks. Compared to the partitions from 29 other algorithms, maximum-modularity partitions have the best medians for description length, coverage, performance, average conductance, and well clusteredness. These advantages come at the cost of additional computations which Bayan makes possible for small networks (networks that have up to 3000 edges in their largest connected component). Bayan is several times faster than using open-source and commercial solvers for modularity maximization, making it capable of finding optimal partitions for instances that cannot be optimized by any other existing method. Our results point to a few well-performing algorithms, among which Bayan stands out as the most reliable method for small networks. A python implementation of the Bayan algorithm (bayanpy) is publicly available through the package installer for python.

摘要

社区检测是一个经典的网络问题,在各个领域都有广泛应用。其最常见的方法是使用模块化最大化启发式算法,这种算法很少能返回最优划分或类似的结果。具有全局最优模块化的划分很难计算,因此尚未得到充分探索。我们使用结构多样的网络,比较了30种社区检测方法,包括我们提出的具有最优性和近似保证的算法:巴扬算法。与现有方法不同,巴扬算法能全局最大化模块化或在一定因子内对其进行近似。我们的结果表明,在两个标准基准测试中,对于广泛的参数设置,最大模块化划分在检索植入划分时具有独特的准确性和稳定性,其速率高于大多数其他方法。与其他29种算法的划分相比,最大模块化划分在描述长度、覆盖率、性能、平均传导性和良好聚类性方面具有最佳中位数。这些优势是以额外的计算为代价的,而巴扬算法使小网络(最大连通分量中边数最多为3000条的网络)能够进行这种计算。巴扬算法比使用开源和商业求解器进行模块化最大化快几倍,使其能够为任何其他现有方法无法优化的实例找到最优划分。我们的结果指出了一些性能良好的算法,其中巴扬算法是小网络中最可靠的方法。巴扬算法的Python实现(bayanpy)可通过Python包安装程序公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验